DOI QR코드

DOI QR Code

Comparative Analysis of Channel Length Dependence of NBTI and CHC Characteristics in PMOSFETs

PMOSFET의 채널 길이에 따른 NBTI 스트레스와 CHC 스트레스의 신뢰성 특성 비교 분석

  • Yu, Jae-Nam (Department of Electronic Engineering, Chungnam University) ;
  • Kwon, Sung-Kyu (Department of Electronic Engineering, Chungnam University) ;
  • Shin, Jong-Kwan (Department of Electronic Engineering, Chungnam University) ;
  • Oh, Sun-Ho (Department of Electronic Engineering, Chungnam University) ;
  • Lee, Ho-Ryung (Department of Electronic Engineering, Chungnam University) ;
  • Jang, Sung-Yong (Department of Electronic Engineering, Chungnam University) ;
  • Song, Hyung-Sub (Department of Electronic Engineering, Chungnam University) ;
  • Lee, Ga-Won (Department of Electronic Engineering, Chungnam University) ;
  • Lee, Hi-Deok (Department of Electronic Engineering, Chungnam University)
  • 유재남 (충남대학교 전자전파정보통신공학과) ;
  • 권성규 (충남대학교 전자전파정보통신공학과) ;
  • 신종관 (충남대학교 전자전파정보통신공학과) ;
  • 오선호 (충남대학교 전자전파정보통신공학과) ;
  • ;
  • 장성용 (충남대학교 전자전파정보통신공학과) ;
  • 송형섭 (충남대학교 전자전파정보통신공학과) ;
  • 이가원 (충남대학교 전자전파정보통신공학과) ;
  • 이희덕 (충남대학교 전자전파정보통신공학과)
  • Received : 2014.06.12
  • Accepted : 2014.06.24
  • Published : 2014.07.01

Abstract

Channel length dependence of NBTI (negative bias temperature instablilty) and CHC (channel hot carrier) characteristics in PMOSFET is studied. It has been considered that HC lifetime of PMOSFET is larger than NBTI lifetime. However, it is shown that CHC degradation is greater than NBTI degradation for PMOSFET with short channel length. 1/f noise and charge pumping measurement are used for analysis of these degradations.

Keywords

References

  1. S. Wolf. Silicon Proc. for the VLSI Era (LATTICE, America, 1995). p. 559-581.
  2. G. L. Rosa, F. guarin, S. Rauch, A. Acovic, J. Lukaitis, and E. Crabbe, Reli. Phys. Sympo.(IRPS), 282 (1997).
  3. Y. Wang and M. Zwolinski, Int. conf. on Solid-State and Integrated-Circuit Technology(IEEE), 440 (2008).
  4. B. Yan, J Qin, J Dai, Q. Fan, and J. B. Bernstein, Int. Conf. on Solid-State and Integrated-Circuit Technology(IEEE), 125 (2008).
  5. C. E. Blat, E. H. Nicollian, and E. H. Poindexter, J. Appl. Physics, 69, 1712 (1991). https://doi.org/10.1063/1.347217
  6. G. Pobegen and M. Nelhiebel, IEEE Reli. Phys. Sympo. (IRPS), XT.10.1 - XT.10.6 (2013).
  7. M. Song, IEEE Trans. Elect. Dev., 44, 268 (1997). https://doi.org/10.1109/16.557714
  8. H. Kitagawa, Proc. of 1997 Int. Symposium on Physical & Failure Analysis of Integrated Circuits, 125 (1997).
  9. J. T. Park, Microelectron. Reliab., 36, 1659 (1996). https://doi.org/10.1016/0026-2714(96)00167-9
  10. C. Tu, S. Chen, M. Lin, M. Wang, S. Wu, S. Chou, J. Ko, and H. Huang, Appl. Surf. Sci., 254, 6186 (2008). https://doi.org/10.1016/j.apsusc.2008.02.181
  11. C. R. Parthasarathy, M. Denais, V. Huard, G. Ribes, E. Vincent, and A. Bravaix, IEEE Trans. Dev. and Mat. Rel., 7, 130 (2007). https://doi.org/10.1109/TDMR.2007.898085
  12. C. R. Parthasarathy, M. Denais, V. Huard, G. Ribes, E. Vincent, and A. Bravaix, Reliability Physics Symposium 2007. Proc. of 45th Annual, 696 (2007).
  13. T. Tsuchiya, IEEE Trans. Elect. Dev., 39, 404 (1992). https://doi.org/10.1109/16.121700
  14. C. Chen, IEEE Trans. Electr. Dev., 45, 512 (1998). https://doi.org/10.1109/16.658688
  15. F. N. Hooge, IEEE Trans. Electr. Dev., 41, 1926 (1994). https://doi.org/10.1109/16.333808
  16. F. N. Hooge, Rep. Prog. Phys., 44, 480 (1981).
  17. L. K. J. Vandamme, IEEE Trans. Electr. Dev., 41, 1936 (1994). https://doi.org/10.1109/16.333809
  18. K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, Transistors, IEEE Trans. Electr. Dev., 37, 654 (1990). https://doi.org/10.1109/16.47770
  19. N. K. Jha, IEEE Electr. Dev. Lett., 26, 687 (2005). https://doi.org/10.1109/LED.2005.854389