참고문헌
- K. J. Tierney, D. E. Block, and M. L. Longo, Elasticity and phase behavior of DPPC membrane modulated by cholesterol, ergosterol, and ethanol, Biophysical. J., 89, 2481 (2005). https://doi.org/10.1529/biophysj.104.057943
- D. L. MacDonald and H. Goldfine, Effects of solvents and alcohols on the polar lipid composition of clostridium butyricum under conditions of controlled lipid chain composition, Appl. Environ. Microbiol., 57(12), 3517 (1991).
- P. L. Yeagle, The structure of biological membranes 2nd ed., 173, CRC Press, Boca Raton, Florida (2005).
- H. V. Ly and M. L. Longo, The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers, Biophys. J., 87, 1013 (2004). https://doi.org/10.1529/biophysj.103.034280
- H. V. Ly, D. E. Block, and M. L. Longo, Interfacial tension effect of ethanol on lipid bilayer rigidity, stability, and area/molecule: a micropipet aspiration approach, Langmuir, 18, 8988 (2002). https://doi.org/10.1021/la026010q
- H. Gaussier, H. Morency, M. C. Lavoie, and M. Subirade, Replacement of trifluoroacetic acid with HCl in the hydrophobic purification steps of pediocin PA-1: a structural effect, Appl. Environ. Microbiol., 68(10), 4803 (2002). https://doi.org/10.1128/AEM.68.10.4803-4808.2002
- M. Goodman, F. Chen, and F. R. Prince, Conformational aspect of polypeptide structure. XLIV. Conformational transitions of poly (N-methyl-alanines) induced by trifluoroacetic acid, Biopolymers, 12(11), 2549 (1973). https://doi.org/10.1002/bip.1973.360121109
- F. D. Sonnichsen, J. E. Van Eyk, R. S. Hodges, and B. D. Sykes, Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide, Biochemistry, 31(37), 8790 (1992). https://doi.org/10.1021/bi00152a015
- R. Xue, S. Wang, C. Wang, T. Zhu, F. Li, and H. Sun, HFIP-induced structures and assemblies of the peptides from the transmembrane domain 4 of membrane protein Nramp1, Biopolymer, 84(3), 329 (2006). https://doi.org/10.1002/bip.20478
-
R. B. Nellas, Q. R. Johnson, and T. Shen, Solventinduced
${\alpha}$ - to 3(10)-helix transition of an amphiphilic peptide, Biochemistry, 52(40), 7137 (2013). https://doi.org/10.1021/bi400537z - R. B. Gennis, Biomembranes: Molecular structure and function, ed. Springer, Springer Verlag, New York (1989).
- H. L. Scott Jr. and T. J. Coe, A theoretical study of lipid-protein interactions in bilayers, Biophys. J., 42(3), 219 (1983). https://doi.org/10.1016/S0006-3495(83)84389-6
- A. G. Lee, Lipid-protein interactions in biological membranes: a structural perspective, Biochimica. et. Biophysica. Acta., 1612, 1 (2003). https://doi.org/10.1016/S0005-2736(03)00056-7
- A. G. Lee, Lipid-protein interactions, Biochem. Soc. Trans., 39(3), 761 (2011). https://doi.org/10.1042/BST0390761
- A. C. Newton, Interaction of Proteins With Lipid Headgroups: Lessons from Protein Kinase C, Annu. Rev. Biophys. Biomol. Struct., 22, 1 (1993). https://doi.org/10.1146/annurev.bb.22.060193.000245
- M. J. Sanderson, Peptide-lipid interactions: Insights and perspectives, Org. Biomol. Chem., 3, 201 (2005). https://doi.org/10.1039/b415499a
- R. S. Harrison, P. C. Sharpe, Y. Singh, and D. P. Fairlie, Amyloid peptides and proteins in review, Rev. Physiol. Biochem. Pharmacol., 159, 1 (2007).
- E. A. Smith and P. K. Dea, Applications of calorimetry in a wide context-differential scanning calorimetry, isothermal titration calorimetry and microcalorimetry : Chapter 18, ed. Amal Ali Elkordy, In Tech, Croatia (2013).
- S. Tristram-Nagle, T. Moore, H. I. Petrache, and J. F. Nagle, DMSO produces a new subgel phase in DPPC: DSC and X-ray diffraction study, Biochimica. et. Biophysica. Acta., 1369, 19 (1998). https://doi.org/10.1016/S0005-2736(97)00197-1
- S. Ali, S. Minchey, A. Janoff, and E. Mayhew, A differential scanning calorimetry study of phosphocholines mixed with paclitaxel and its bromoacylated taxanes, Biophys. J., 78(1), 246 (2000). https://doi.org/10.1016/S0006-3495(00)76588-X
- I. C. P. Smith and I. H. Ekiel, Phosphorus-31 NMR: Principles and applications, ed. D. Gorenstein, 447, Academic Press Inc., London, England (1984).
-
J. Seelig,
$^{31}P$ nuclear magnetic resonance and the head group structure of phospholipids in membranes, Biochim. Biophys. Acta., 515, 105 (1978). https://doi.org/10.1016/0304-4157(78)90001-1 - K. A. H. Wildman, D. K. Lee, and A. Ramamoorthy, Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37, Biochemistry, 42(21), 6545 (2003). https://doi.org/10.1021/bi0273563
- K. J. Hallock, D. K. Lee, and A. Ramamoorthy, MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain, Biophys. J., 84(5), 3052 (2003). https://doi.org/10.1016/S0006-3495(03)70031-9
- P. L. Yeagle, Encyclopedia of nuclear magnetic resonance, eds. D. M. Grant and R.K. Harris, 3015, John Wiley, Toronto, Canada (1996).
- J. Safar, P. P. Roller, D. C. Gadusek, and C. J. Gibbs Jr., Thermal stability and conformational transitions of scrapie amyloid (prion) protein correlate with infectivity, Protein Science, 2, 2206 (1993). https://doi.org/10.1002/pro.5560021220
- T. Hayakawa, Y. Kondo, and H. Yamamoto, Secondary structure of poly-L-arginine and its derivatives, Bulletin of Chemical Society of Japan, 42, 1937 (1969). https://doi.org/10.1246/bcsj.42.1937
- S. P. Brazier, B. Ramesh, P. I. Haris, D. C. Lee, and S. K. S. Srai, Secondary structure analysis of the putative membrane-associated domains of the inward rectifier K+ channel ROMK1, Biochem. J., 335, 375 (1998). https://doi.org/10.1042/bj3350375