Browse > Article
http://dx.doi.org/10.15230/SCSK.2014.40.2.163

Effects of Residual Solvents in the Phase Transition, Transition Enthalpy, and Transition Temperature of Phospholipid Membranes  

An, Eun Seol (Department of Fine Chemistry, Seoul National University of Science and Technology)
Choi, Jae Sun (Department of Fine Chemistry, Seoul National University of Science and Technology)
Lee, Dong Kuk (Department of Fine Chemistry, Seoul National University of Science and Technology)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.40, no.2, 2014 , pp. 163-170 More about this Journal
Abstract
Lipid membranes composed of phosphatidylcholine (PC) are used in biophysical study to mimic cellular membranes and interactions between the membrane and chemicals, where organics solvents are used in dissolving lipids or chemicals. Later, solvents are removed from the solution under nitrogen gas at room temperature, followed by the further removal of the solvent at vacuum condition for several hours. In this process, some solvents are easily removed under described conditions above and others are required more severe conditions. In this study, $^{31}P$ solid-state nuclear magnetic resonance (SSNMR) techniques and differential scanning calorimetry (DSC) were used to see any changes in the line shapes of $^{31}P$ NMR spectra of multilamellar vesicles (MLVs) samples of POPC and in the phase change temperature of multilamellar vesicles (MLVs) of DPPC in DSC thermogram with or without any residual solvents. The thermodynamic parameters associated with the solvents did exhibit noticeable changes depending on solvent types. Thus, it is concluded that solvents should be carefully chosen and removed completely and experimental results should also be interpreted with caution particularly for the experiments investigating lipid phase changes and related topics.
Keywords
Lipid phase; Differential Scanning Calorimetry (DSC); lipid membrane; Solvent effects; $^{31}P$ solid-state Nuclear Magnetic Resonance ($^{31}P$ SSNMR);
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Tristram-Nagle, T. Moore, H. I. Petrache, and J. F. Nagle, DMSO produces a new subgel phase in DPPC: DSC and X-ray diffraction study, Biochimica. et. Biophysica. Acta., 1369, 19 (1998).   DOI   ScienceOn
2 S. Ali, S. Minchey, A. Janoff, and E. Mayhew, A differential scanning calorimetry study of phosphocholines mixed with paclitaxel and its bromoacylated taxanes, Biophys. J., 78(1), 246 (2000).   DOI   ScienceOn
3 I. C. P. Smith and I. H. Ekiel, Phosphorus-31 NMR: Principles and applications, ed. D. Gorenstein, 447, Academic Press Inc., London, England (1984).
4 J. Seelig, $^{31}P$ nuclear magnetic resonance and the head group structure of phospholipids in membranes, Biochim. Biophys. Acta., 515, 105 (1978).   DOI   ScienceOn
5 K. A. H. Wildman, D. K. Lee, and A. Ramamoorthy, Mechanism of lipid bilayer disruption by the human antimicrobial peptide, LL-37, Biochemistry, 42(21), 6545 (2003).   DOI   ScienceOn
6 K. J. Hallock, D. K. Lee, and A. Ramamoorthy, MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain, Biophys. J., 84(5), 3052 (2003).   DOI   ScienceOn
7 P. L. Yeagle, Encyclopedia of nuclear magnetic resonance, eds. D. M. Grant and R.K. Harris, 3015, John Wiley, Toronto, Canada (1996).
8 J. Safar, P. P. Roller, D. C. Gadusek, and C. J. Gibbs Jr., Thermal stability and conformational transitions of scrapie amyloid (prion) protein correlate with infectivity, Protein Science, 2, 2206 (1993).   DOI   ScienceOn
9 T. Hayakawa, Y. Kondo, and H. Yamamoto, Secondary structure of poly-L-arginine and its derivatives, Bulletin of Chemical Society of Japan, 42, 1937 (1969).   DOI
10 S. P. Brazier, B. Ramesh, P. I. Haris, D. C. Lee, and S. K. S. Srai, Secondary structure analysis of the putative membrane-associated domains of the inward rectifier K+ channel ROMK1, Biochem. J., 335, 375 (1998).   DOI
11 H. Gaussier, H. Morency, M. C. Lavoie, and M. Subirade, Replacement of trifluoroacetic acid with HCl in the hydrophobic purification steps of pediocin PA-1: a structural effect, Appl. Environ. Microbiol., 68(10), 4803 (2002).   DOI
12 M. Goodman, F. Chen, and F. R. Prince, Conformational aspect of polypeptide structure. XLIV. Conformational transitions of poly (N-methyl-alanines) induced by trifluoroacetic acid, Biopolymers, 12(11), 2549 (1973).   DOI
13 F. D. Sonnichsen, J. E. Van Eyk, R. S. Hodges, and B. D. Sykes, Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide, Biochemistry, 31(37), 8790 (1992).   DOI   ScienceOn
14 R. Xue, S. Wang, C. Wang, T. Zhu, F. Li, and H. Sun, HFIP-induced structures and assemblies of the peptides from the transmembrane domain 4 of membrane protein Nramp1, Biopolymer, 84(3), 329 (2006).   DOI   ScienceOn
15 R. B. Nellas, Q. R. Johnson, and T. Shen, Solventinduced ${\alpha}$- to 3(10)-helix transition of an amphiphilic peptide, Biochemistry, 52(40), 7137 (2013).   DOI   ScienceOn
16 R. B. Gennis, Biomembranes: Molecular structure and function, ed. Springer, Springer Verlag, New York (1989).
17 A. G. Lee, Lipid-protein interactions in biological membranes: a structural perspective, Biochimica. et. Biophysica. Acta., 1612, 1 (2003).   DOI   ScienceOn
18 A. G. Lee, Lipid-protein interactions, Biochem. Soc. Trans., 39(3), 761 (2011).   DOI
19 A. C. Newton, Interaction of Proteins With Lipid Headgroups: Lessons from Protein Kinase C, Annu. Rev. Biophys. Biomol. Struct., 22, 1 (1993).   DOI   ScienceOn
20 M. J. Sanderson, Peptide-lipid interactions: Insights and perspectives, Org. Biomol. Chem., 3, 201 (2005).   DOI   ScienceOn
21 R. S. Harrison, P. C. Sharpe, Y. Singh, and D. P. Fairlie, Amyloid peptides and proteins in review, Rev. Physiol. Biochem. Pharmacol., 159, 1 (2007).
22 E. A. Smith and P. K. Dea, Applications of calorimetry in a wide context-differential scanning calorimetry, isothermal titration calorimetry and microcalorimetry : Chapter 18, ed. Amal Ali Elkordy, In Tech, Croatia (2013).
23 K. J. Tierney, D. E. Block, and M. L. Longo, Elasticity and phase behavior of DPPC membrane modulated by cholesterol, ergosterol, and ethanol, Biophysical. J., 89, 2481 (2005).   DOI   ScienceOn
24 D. L. MacDonald and H. Goldfine, Effects of solvents and alcohols on the polar lipid composition of clostridium butyricum under conditions of controlled lipid chain composition, Appl. Environ. Microbiol., 57(12), 3517 (1991).
25 P. L. Yeagle, The structure of biological membranes 2nd ed., 173, CRC Press, Boca Raton, Florida (2005).
26 H. V. Ly and M. L. Longo, The influence of short-chain alcohols on interfacial tension, mechanical properties, area/molecule, and permeability of fluid lipid bilayers, Biophys. J., 87, 1013 (2004).   DOI   ScienceOn
27 H. V. Ly, D. E. Block, and M. L. Longo, Interfacial tension effect of ethanol on lipid bilayer rigidity, stability, and area/molecule: a micropipet aspiration approach, Langmuir, 18, 8988 (2002).   DOI   ScienceOn
28 H. L. Scott Jr. and T. J. Coe, A theoretical study of lipid-protein interactions in bilayers, Biophys. J., 42(3), 219 (1983).   DOI   ScienceOn