DOI QR코드

DOI QR Code

Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea

  • Lee, Dong Hwan (Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Jin-Beom (Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lim, Jeong-A (Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration) ;
  • Han, Sang-Wook (Department of Integrative Plant Science, Chung-Ang University) ;
  • Heu, Sunggi (Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration)
  • Received : 2013.12.06
  • Accepted : 2014.01.14
  • Published : 2014.06.01

Abstract

The plant pathogenic bacterial genus Pectobacteirum consists of heterogeneous strains. The P. carotovorum species is a complex strain showing divergent characteristics, and a new subspecies named P. carotovorum subsp. brasiliensis has been identified recently. In this paper, we re-identified the P. carotovorum subsp. brasiliensis isolates from those classified under the subspecies carotovorum and newly isolated P. carotovorum subsp. brasiliensis strains. All isolates were able to produce plant cell-wall degrading enzymes such as pectate lyase, polygalacturonase, cellulase and protease. We used genetic and biochemical methods to examine the diversity of P. carotovorum subsp. brasiliensis isolates, and found genetic diversity within the brasiliensis subsp. isolates in Korea. The restriction fragment length polymorphism analysis based on the recA gene revealed a unique pattern for the brasiliensis subspecies. The Korean brasiliensis subsp. isolates were divided into four clades based on pulsed-field gel electrophoresis. However, correlations between clades and isolated hosts or year could not be found, suggesting that diverse brasiliensis subsp. isolates existed.

Keywords

References

  1. Charkowski, A. O. 2006. The soft rot Erwinia. In: Plant-Associated Bacteria, eds. by S. S. Gnanamanickam, pp. 423-505. Springer, Netherlands.
  2. Choi, O. and Kim, J. 2013. Pectobacterium carotovorum subsp. brasiliense causing soft rot on paprika in Korea. J. Phytopathol. 161:125-127. https://doi.org/10.1111/jph.12022
  3. Darrasse, A., Priou, S., Kotoujansky, A. and Bertheau, Y. 1994. PCR and restriction length polymorphism of a pel gene as a tool to identify Erwinia carotovora in relation to potato diseases. Appl. Environ. Microbiol. 60:1437-1443.
  4. De Boer, S. H., Li, X. and Ward, L. J. 2012. Pectobacterium spp. associated with bacterial stem rot syndrome of potato in Canada. Phytopathology 102:937-947. https://doi.org/10.1094/PHYTO-04-12-0083-R
  5. Duarte, V., De Boer, S. H., Ward, L. J. and De Oliveira, A. M. R. 2004. Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. J. Appl. Microbiol. 96: 535-545. https://doi.org/10.1111/j.1365-2672.2004.02173.x
  6. Eisen, J. A. 1995. The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J. Mol. Evol. 41:1105-1123.
  7. Gardan, L., Gouy, C., Christen, R. and Samson, R. 2003. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int. J. Syst. Evol. Microbiol. 53:381-391. https://doi.org/10.1099/ijs.0.02423-0
  8. Hauben, L., Moore, E. R. B., Vauterin, L., Steenackers, M., Mergaert, J., Verdonck, L. and Swings, J. 1998. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst. Appl. Microbiol. 21:384-397. https://doi.org/10.1016/S0723-2020(98)80048-9
  9. Hunter, S. B., Vauterin, P., Lambert-Fair, M. A., Van Duyne, M. S., Kubota, K., Graves, L., Wrigley, D., Barrett, T. and Ribot, E. 2005. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J. Clin. Microbiol. 43:1045-1050. https://doi.org/10.1128/JCM.43.3.1045-1050.2005
  10. Kim, H.-S., Ma, B., Perna, N. T. and Charkowski, A. O. 2009. Phylogeny and virulence of naturally occurring type III secretion system-deficient Pectobacterium strains. Appl. Environ. Microbiol. 75:4539-4549. https://doi.org/10.1128/AEM.01336-08
  11. Lee, D. H., Kim, J.-B., Kim, M., Roh, E., Jung, K., Choi, M., Oh, C., Choi, J., Yun, J. and Heu, S. 2013a. Microbiota on spoiled vegetables and their characterization. J. Food Prot. 76:1350-1358. https://doi.org/10.4315/0362-028X.JFP-12-439
  12. Lee, D. H., Lim, J.-A., Lee, J., Roh, E., Jung, K., Choi, M., Oh, C., Ryu, S., Yun, J. and Heu, S. 2013b. Characterization of genes required for the pathogenicity of Pectobacterium carotovorum subsp. carotovorum Pcc21 in Chinese cabbage. Microbiology 159:1487-1496. https://doi.org/10.1099/mic.0.067280-0
  13. Lee, J.-H., Hong, J. B., Hong, S. B., Choi, M.-S., Jeong, K. Y., Park, H.-J., Hwang, D.-J., Lee, S., Ra, D. and Heu, S. 2008. Disease-resistant transgenic Arabidopsis carrying the expI gene from Pectobacterium carotovorum subsp. carotovorum SL940. Plant Pathol. J. 24:183-190. https://doi.org/10.5423/PPJ.2008.24.2.183
  14. Mae, A., Montesano, M., Koiv, V. and Palva, E. T. 2001. Transgenic plants producing the bacterial pheromone N-acylhomoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Mol. Plant-Microbe Interact. 14:1035-1042. https://doi.org/10.1094/MPMI.2001.14.9.1035
  15. Nabhan, S., De Boer, S. H., Maiss, E. and Wydra, K. 2012. Taxonomic relatedness between Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. odoriferum and Pectobacterium carotovorum subsp. brasiliense subsp. nov. J. Appl. Microbiol. 113:904-913. https://doi.org/10.1111/j.1365-2672.2012.05383.x
  16. Panda, P., Fiers, M. A. W. J., Armstrong, K. and Pitman, A. R. 2012. First report of blackleg and soft rot of potato caused by Pectobacterium carotovorum subsp. brasiliensis in New Zealand. New Dis. Rep. 26:15. https://doi.org/10.5197/j.2044-0588.2012.026.015
  17. Park, T.-H., Choi, B.-S., Choi, A.-Y., Choi, I.-Y., Heu, S. and Park, B.-S. 2012. Genome sequence of Pectobacterium carotovorum subsp. carotovorum strain PCC21, a pathogen causing soft rot in Chinese cabbage. J. Bacteriol. 194:6345-6346. https://doi.org/10.1128/JB.01583-12
  18. Pasanen, M., Laurila, J., Brader, G., Palva, E. T., Ahola, V., van der Wolf, J., Hannukkala, A. and Pirhonen, M. 2013. Characterisation of Pectobacterium wasabiae and Pectobacterium carotovorum subsp. carotovorum isolates from diseased potato plants in Finland. Ann. Appl. Biol. 163:403-419. https://doi.org/10.1111/aab.12076
  19. Samson, R., Legendre, J. B., Christen, R., Fischer-Le Saux, M., Achouak, W. and Gardan, L. 2005. Transfer of Pectobacterium chrysanthemi (Burkholder et al., 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int. J. Syst. Evol. Microbiol. 55:1415-1427. https://doi.org/10.1099/ijs.0.02791-0
  20. Seo, S. T., Koo, J. H., Hur, J. H. and Lim, C. K. 2004. Characterization of Korean Erwinia carotovora strains from potato and Chinese cabbage. Plant Pathol. J. 20:283-288. https://doi.org/10.5423/PPJ.2004.20.4.283
  21. Seo, S. T., Furuya, N., Lim, C. K., Takanami, Y. and Tsuchiya, K. 2002. Phenotypic and genetic diversity of Erwinia carotovora ssp. carotovora strains from Asia. J. Phytopathol. 150:120-127. https://doi.org/10.1046/j.1439-0434.2002.00722.x
  22. Seo, S.-T., Lee, S., Lee, J.-S., Han, K.-S., Jang, H.-I. and Lim, C. -K. 2005. Genetic characterization of potato blackleg strains from Jeju island. Res. Plant Dis. 11:140-145. https://doi.org/10.5423/RPD.2005.11.2.140
  23. Toth, I. K., Bell, K. S., Holeva, M. C. and Birch, P. R. J. 2003. Soft rot erwiniae: from genes to genomes. Mol. Plant Pathol. 4:17-30. https://doi.org/10.1046/j.1364-3703.2003.00149.x
  24. van der Merwe, J. J., Coutinho, T. A., Korsten, L. and van der Waals, J. E. 2010 Pectobacterium carotovorum subsp. brasiliensis causing blackleg on potatoes in South Africa. Eur. J. Plant Pathol. 126:175-185. https://doi.org/10.1007/s10658-009-9531-2
  25. Waleron, M., Waleron, K., Podhajska, A. J. and Lojkowska, E. 2002. Genotyping of bacteria belonging to the former Erwinia genus by PCR-RFLP analysis of a recA gene fragment. Microbiology 148:583-595. https://doi.org/10.1099/00221287-148-2-583
  26. Waleron, M., Waleron, K., Geider, K. and Lojkowska, E. 2008. Application of RFLP analysis of recA, gyrA and rpoS gene fragments for rapid differentiation of Erwinia amylovora from Erwinia strains isolated in Korea and Japan. Eur. J. Plant Pathol. 121:161-172. https://doi.org/10.1007/s10658-007-9260-3
  27. Yap, M.-N., Barak, J. D. and Charkowski, A. O. 2004. Genomic diversity of Erwinia carotovora subsp. carotovora and its correlation with virulence. Appl. Environ. Microbiol. 70: 3013-3023. https://doi.org/10.1128/AEM.70.5.3013-3023.2004

Cited by

  1. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens vol.8, pp.1, 2016, https://doi.org/10.1039/C5AY02550H
  2. Bacteriophages and Bacterial Plant Diseases vol.8, 2017, https://doi.org/10.3389/fmicb.2017.00034
  3. Draft Genome Sequence of a VirulentPectobacterium carotovorumsubsp.brasilienseIsolate Causing Soft Rot of Cucumber vol.4, pp.1, 2016, https://doi.org/10.1128/genomeA.01530-15
  4. Bacterial pathogenesis of plants: future challenges from a microbial perspective vol.17, pp.8, 2016, https://doi.org/10.1111/mpp.12427
  5. Molecular methods as tools to control plant diseases caused by Dickeya and Pectobacterium spp: A minireview 2017, https://doi.org/10.1016/j.nbt.2017.08.010
  6. Virulence ofPectobacterium carotovorumsubsp.brasilienseon potato compared with that of otherPectobacteriumandDickeyaspecies under climatic conditions prevailing in the Netherlands vol.66, pp.4, 2017, https://doi.org/10.1111/ppa.12600
  7. Plant growth and resistance promoted by Streptomyces spp. in tomato vol.118, 2017, https://doi.org/10.1016/j.plaphy.2017.07.017
  8. Transcriptional Response to Host Intestinal Extracts Reveals the Involvement of a Widely Conserved Iron Uptake System vol.9, pp.4, 2018, https://doi.org/10.1128/mBio.01347-18
  9. Genotypic and phenotypic variability of Pectobacterium strains causing blackleg and soft rot on potato in Turkey vol.152, pp.1, 2018, https://doi.org/10.1007/s10658-018-1459-y
  10. Colanic Acid Is a Novel Phage Receptor of Pectobacterium carotovorum subsp. carotovorum Phage POP72 vol.10, pp.1664-302X, 2019, https://doi.org/10.3389/fmicb.2019.00143