DOI QR코드

DOI QR Code

Analysis on the Characteristics of the Infra-Gravity Waves inside and outside Pohang New Harbor using a Transfer Function Model

전달함수 모형을 이용한 포항신항 내·외의 외중력파 특성 분석

  • Cho, Hong-Yeon (Marine Environment & Conservation Research Division, Korea Institute of Ocean Science & Technology) ;
  • Jeong, Weon Mu (Coastal Development & Ocean Energy Research Division, KIOST) ;
  • Oh, Sang-Ho (Coastal Development & Ocean Energy Research Division, KIOST)
  • 조홍연 (한국해양과학기술원 해양환경보전연구부) ;
  • 정원무 (한국해양과학기술원 연안개발에너지연구부) ;
  • 오상호 (한국해양과학기술원 연안개발에너지연구부)
  • Received : 2014.03.06
  • Accepted : 2014.06.18
  • Published : 2014.06.30

Abstract

Infra-gravity waves (IGWs) with a period of 1~3 minutes are a factor that directly influences the motion analysis of moored ships inside a harbor and longshore sediment transport analysis. If significant levels of IGWs from far seas are transferred to a harbor and amplified, they may cause downtime of large ships and induce economic loss. In this study, transfer characteristics of the IGWs intruding from outside to inside Pohang New Harbor were analyzed using statistical analysis and transfer function of wave data measured at both outside and inside the harbor for around 5 years. Transfer characteristic analysis was limited to events where IGWs had wave heights above 0.1 m. The wave height distribution of inside the harbor was similar to that of outside the harbor, while the wave period variance of the former was larger than that of the latter. The parameters of the transfer function was optimally estimated according to each event. The estimated average RMS error of the wave height inside the harbor was around 0.013 m. The estimated parameters had a strong correlation with the linear combination information of IGW wave height, period, and direction (R = 0.95). The transfer function suggested in this study can quickly and easily estimate information on IGWs inside the harbor using IGW information predicted beforehand, and is expected to reduce damage due to unexpected restrictions on harbor usage.

주기가 약 1~3분인 외중력파는 항만 내의 계류선박의 거동해석 및 연안 표사이동 해석에 직접적인 영향을 미치는 인자이다. 먼 바다의 유의미한 외중력파가 항만으로 전파되어 증폭될 경우 대형선박의 하역작업을 중단시켜 경제적인 손실을 유발할 수 있다. 본 연구에서는 포항신항의 항외 및 항내에서 약 5년 동안 동시 관측한 파랑 자료에 대한 통계분석 및 전달함수를 사용하여 항만 외부로부터 내부로의 외중력파 전파특성을 분석하였다. 전파 특성분석은 외중력파의 파고가 0.1 m 이상이 되는 사상만을 이용하였다. 통계적인 특성분석 결과, 항만 내부의 파고분포는 외부와 유사한 반면 주기분포는 항만 외부보다 분산이 컸다. 전달함수의 매개변수는 각각의 사상에 대하여 최적 추정하였다. 항만 내부의 파고 추정 평균 RMS 오차는 0.013 m 수준이었다. 추정 매개변수는 외중력파의 파고, 주기 및 파향의 선형조합 정보와 강한 상관관계가 있었다(R = 0.95). 본 연구에서 제안한 전달함수는 사전 예측된 외중력파 정보를 이용하여 항만 내부의 외중력파 정보를 빠르고 간단하게 추정할 수 있으므로 예상하지 못한 항만이용 제한에 따른 피해를 저감할 수 있을 것으로 기대된다.

Keywords

References

  1. Bellotti, G. and Franco, L. (2011). Measurement of long waves at the harbour of Marina di Carrara. Italy, Ocean Dynamics, 61, 2051-2059. https://doi.org/10.1007/s10236-011-0468-6
  2. Bowers, E.C. (1992). Low frequency waves in intermediate water depths. Proceedings of 23rd Conference on Coastal Engineering, 832-845, Reston, VA, ASCE.
  3. Box, G.E.P, Jenkins, G.M. and Reinsel, G.C. (2008). Time series analysis: Forecasting and control. Fourth Edition, Chap. 12, A John Wiley & Sons, Inc.
  4. Cho, H.Y., Jeong, W.M, Baek W.D. and Kim S.I. (2012). Analysis of the variation pattern of the wave climate in the Sokcho coastal zone. J. of Korean Society of Coastal and Ocean Engineers, 24(2), 120-127. https://doi.org/10.9765/KSCOE.2012.24.2.120
  5. Herbers, T.H., Elgar, S. and Guza, R.T. (1995). Generation and propagation of infragravity waves. J. of Geophysical Research, 100(C12), 24,863-24,872. https://doi.org/10.1029/95JC02680
  6. Holthuijsen, L. H., (2007). Waves in oceanic and coastal waters. Chap. 1, Cambridge University Press.
  7. Kamphuis, J.W. (2000). Introduction to coastal engineering and management. Chap. 2, World Scientific.
  8. Lopez, M. and Iglesias, G. (2013). Artificial intelligence for estimating infragravity energy in a harbour. Ocean Engineering, 57, 56-63. https://doi.org/10.1016/j.oceaneng.2012.08.009
  9. Munk, W.H. (1950). Origin and generation of waves. Proceedings of First Conference on Coastal Engineering, 1-4, Long Beach, California, ASCE.
  10. Okihiro, M. and Guza, R.T. (1996). Observations of seiche forcing and amplification in three small harbors. J. of Waterway, Port, Coastal and Ocean Engineering, 122(5), 232-238. https://doi.org/10.1061/(ASCE)0733-950X(1996)122:5(232)
  11. Pohang Regional Maritime Affairs and Port Administration (2010). A study on the cause analysis and reduction methods of swell in Pohang New Harbor. Vol. 2, Ocean monitoring data report.
  12. Pohang Regional Maritime Affairs and Port Administration (2012). A feasibility study and master plan of the swell reduction conutermeasures in Pohang New Harbor. Vol. 2, Ocean monitoring data report.
  13. Reniers, A.J.H.M., Groenewegen, M.J., Ewans, K.C., Masterton, S., Stelling, G.S. and Meek, J. (2010). Estimation of infragravity waves at intermediate water depth. Coastal Engineering, 57, 52-61. https://doi.org/10.1016/j.coastaleng.2009.09.013
  14. Rijnsdorp, D.P. (2011). Numerical modelling of infragravity waves in coastal regions. MSc. Thesis, Delft University of Technology. The Netherlands.
  15. Silverman, B.W. (1998). Density estimation for statistics and data analysis. Monographs on statistics and applied probability, 26, Chapman & Hall/CRC.
  16. Storch, v H. and Zwiers, F.W. (1999). Statistical analysis in climate research. Chap. 12, Cambridge Univ. Press.
  17. Thiebaut, S., McComb, P. and Vennell, R. (2013). Prediction of coastal far infragravity waves from sea-swell spectra. J. of Waterway, Port, Coastal, and Ocean Engineering, 139(1), 34-44. ASCE. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000166