DOI QR코드

DOI QR Code

초기 산사태 발생에 영향을 미치는 지형요소의 특성분석

Analysis on the Characteristics of Geomorphological Features Affecting the Initial State of Landslides

  • 차아름 (국립재난안전연구원 방재연구실, 한양대학교 토목공학과) ;
  • 김태훈 (국립재난안전연구원 방재연구실)
  • Cha, A-Reum (Disaster Prevention Research Division, National Disaster Management Institute, Dept. of Civil Engrg., Hanyang Univ.) ;
  • Kim, Tai-Hoon (Disaster Prevention Research Division, National Disaster Management Institute)
  • 투고 : 2014.04.28
  • 심사 : 2014.06.05
  • 발행 : 2014.06.30

초록

본 연구는 실제 지형의 특성을 파악, 이를 초기 산사태 위험도 평가에 활용하는데 그 목적이 있다. 지형특성 분석을 위해 SINMAP과 통계적 기법인 평면도(Planarity)를 활용하였으며 이를 실제 산사태 발생지역에 적용, 지형 특성과 산사태 위험도와의 관계를 규명하고자 하였다. 분석결과는 제안한 두 가지 기법 모두 위험도가 높다고 평가한 지역에서는 초기 산사태 위험도가 상대적으로 높게 산정되었다. 이는 본 연구에서 제시한 방법이 지형특성과 산사태 위험도와의 관계성 규명에 있어 합리적임을 보여준다고 할 수 있다. 또한, 실제 현장조사 결과와 비교한 초기 산사태 위험도는 SINMAP 기법이 토석류와 같은 연속성 산사태에 있어 보다 정확하게 판단되었으나, 특정요소의 위험성을 구체적으로 고려할 수 있는 기법을 추가적으로 고려한다면 보다 정확한 초기 산사태 위험도를 평가할 수 있을 것으로 사료된다.

The main objective of this study is to evaluate the preliminary landslide hazard based on the identification of geomorphological features, which are believed to be critical values in the initial state of landslides. Two methods, SINMAP and Planarity analyses, are used to simulate those characteristics where landslides are actually located. Results showed that both methods well discriminate geomorphic features between stable and unstable domains in the landslide areas. SINMAP analysis which is the consecutive model considering external factors like infiltration identifies the landslide hazard especially for debris flow type landslides better than plararity analysis focusing on a specific area. This analysis combined with other methods dealing with specific characteristics of geomorphological feature, the accurate landslide hazard will be evaluated.

키워드

참고문헌

  1. Natioanl Emergency Management Agency (2012), "Annual Disaster Report 2012", NEMA, pp.1226-1242.
  2. Oh, K. D., Hong, I. P., Jun, B. H., Ahn, W. S., and Lee, M. Y. (2006), "Evaluation of gis-based landslide hazard mapping", Journal of Korea Water Resources Association, Vol.39, No.1, pp. 23-33. https://doi.org/10.3741/JKWRA.2006.39.1.023
  3. Pack, R. T., Tarboton, D. G., and Goodwin, C. N. (1998), "The SINMAP approach to terrain stability mapping", In 8th congress of the international association of engineering geology, Vancouver, British Columbia, Canada, pp.21-25.
  4. Cha, A. R. (2014), "A Comparative Study on the Identification of Landslide Hazard Using Geomorphological Characteristics", Korean Geo-Environmental Society, Vol.15, No.6, pp.67-73.
  5. Kim, T. H., Cruden, D. M., and Martin, C. D. (2012), "Identification of geomorphological features of landslides using airborne laser altimetry", 11th International Symposium on Landslides and 2nd North American Symposium on Landslides, Banff, Alberta, Canada, pp.567-573.
  6. Hobson, R. D. (1972), "Surface roughness in topography: quantitative approach", Spatial Analysis in Geomorphology, Methuen & Co Ltd., London, Great Britain, pp.221-245.
  7. Watson, G. S. (1966), "Statistics of orientation data", Journal of Geology, Vol.74, No.5, pp.786-797. https://doi.org/10.1086/627211
  8. Mark, D. M. (1974), "On the interpretation of till fabrics", Geology, Vol.2, No.2, pp.101-104. https://doi.org/10.1130/0091-7613(1974)2<101:OTIOTF>2.0.CO;2
  9. Woodcock, N. H. (1977), "Specification of fabric shapes using an eigenvalue method", Geological Society of America Bulletin, Vol.88, No.9, pp.1231-1236. https://doi.org/10.1130/0016-7606(1977)88<1231:SOFSUA>2.0.CO;2
  10. Woodcock, N. H. and Naylor, M. A. (1983), "Randomness testing in 3-dimensional orientation data", Journal of Structural Geology, Vol.5, No.5, pp.539-548. https://doi.org/10.1016/0191-8141(83)90058-5
  11. McKean, J. and Roering, J. (2004), "Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry", Geomorphology, Vol.57, pp.331-351. https://doi.org/10.1016/S0169-555X(03)00164-8
  12. Kasai, M., Ikeda, M., Asahina, T., and Fujisawa, K. (2009), "LiDARderived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan", Geomorphology, Vol.113, No.1-2, pp.57-69. https://doi.org/10.1016/j.geomorph.2009.06.004
  13. National Disaster Management Institute (2011), Establishment of collapse warning & evacuation criteria for steep slopes, Developments of the GIS based steep slope collapse determination system (I), Primary Research Report, NDMI-PR-2011-14-01, 154p.
  14. Cha, A. R., Kim, T. H., and Jung, M. S. (2013), "Preliminary risk assessment for landslides using directional vectors", KGS Fall National Conference, pp.1041-1046.
  15. Lee, J. S. and Kim, Y. T. (2013), "Infiltration and stability analysis of weathered granite slope considering rainfall patterns", Journal of the Korean Society of Hazard Mitigation, Vol.13, No.5, pp.83-91. https://doi.org/10.9798/KOSHAM.2013.13.5.083
  16. VanDine, D.F. (1996), Debris flow control structures for forest engineering, Research Branch, B.C. Ministry of Forests, Victoria, B.C., Working Paper 08/1996, pp.4-6.

피인용 문헌

  1. Analysis of Landslide Characteristics of the Central Regions in Korea vol.53, pp.1, 2014, https://doi.org/10.14397/jals.2019.53.1.61