DOI QR코드

DOI QR Code

장기간 강우특성 변화에 따른 국내 사면의 안정성

Slope Stability by Variation of Rainfall Characteristic for Long Period

  • 투고 : 2014.04.23
  • 심사 : 2014.06.13
  • 발행 : 2014.06.30

초록

국내 토사 사면 불안정성의 일반적인 형태는 얕은 사면파괴와 토석류로 구분할 수 있다. 일반적으로 이러한 사면파괴는 장기간의 기후변화 영향에 의해 강우강도 및 지속시간에 의존성이 높아지고 있다. 본 연구는 전국 58개 기상관측소에서 최근 38년간 강우 관측 자료를 정량적(지속 시간별 최대강우강도로 분류)으로 이용하여 강우로 발생하는 자연사면의 안정성과 철도나 고속도로와 같은 수직하중이 재하되고 있는 토목섬유로 보강된 성토사면의 불안정성을 평가하고자 한다. 강우패턴에 따른 무한사면과 토목섬유 보강된 유한사면 안정해석은 1973년부터 2010년까지의 기간을 대략 10년 단위로 나누어 관측소별 지속시간에 따른 최대강우량을 산정하여 수행하였다. 기상관측소에서 최대강우강도를 사용하여 불포화 침투해석을 수행하여, 산사태 위험도를 10년 단위별 4단계에 걸쳐 등고선 지도로 나타내었다. 비록 지반조건을 화강풍화토의 평균적인 강도정수와 일반적인 경사로 일정하게 가정하였지만, 장기간 기상관측자료를 토대로 기후 변화에 따른 사면의 불안정성을 예측할 수 있었으며, 기상변화의 경향을 대비할 수 있는 지반구조물의 적절한 설계도움이 되리라 판단된다.

Shallow landslides and debris flows are a common form of soil slope instability in South Korea. These events may be generally initiated as a result of intense rainfall or lengthening rainfall duration because of the effects of climate change. This paper presents the evaluation of rainfall-induced natural soil slope stability and reinforced soil slope instability under vertical load (railway or highway load) throughout South Korea based on quantitative analysis obtained from 58 sites rainfall observatories for 38 years. The slope stability was performed for infinite and geogrid-reinforced soil slopes by taking an average of maximum rainfall every ten years from 1973 to 2010. Seepage analysis is carried out on unsaturated soil slope using the maximum rainfall at each site, and then the factor of safety was calculated by coupled analysis using saturated and unsaturated strength parameters. The contour map of South Korea shows four stages in 10-year-time for the degree of landslide hazard. The safety factor map based on long term observational data will help prevent rainfall-induced soil slope instability for appropriate design of geotechnical structures regarding disaster protection.

키워드

참고문헌

  1. Collison, A., Wade, S., Criffiths, J., and Dehn, M. (2000), "Modeling the impact of predicted climate change on landslide frequency and magnitude in SE England", Engineering Geology, Vol.55, pp.205-218. https://doi.org/10.1016/S0013-7952(99)00121-0
  2. Dehn, M., Burger, G., Buma, J., and Gasparetto, P. (2000), "Impact of climate change onslope stability using expanded downscaling", Engineering Geology, Vol.55, pp.193-204. https://doi.org/10.1016/S0013-7952(99)00123-4
  3. Dixon, N. and Brook, E. (2007), "Impact of predicted climate change on landslide reactivation: case study on Mam Tor, UK", Landslides, Vol.4, pp.137-147. https://doi.org/10.1007/s10346-006-0071-y
  4. Elias, V., Christopher, B, R., and Berg, R. R. (2001), Mechanically Stabilized Earth Walls and reinforced Soil Slopes Design and Construction Guidelines, Publication No. FHWA-NHI-00-043, National Highway Institute, Federal Highway Administration, U.S. Department of Transportation.
  5. ESRI (2011), ArcGIS Desktop: Release 10: Environmental Systems Research Institute, Redlands, CA, USA.
  6. GeoStudio (2012), version 8.0.10, Manual for SEEP/W and SLOPE/W modeling, GEO-SLOPE International, Ltd., Calgary, Alberta, Canada.
  7. Hwang, H, Jun, K., and Yune, C. (2012), "Site Investigation on Slope Hazard and Triggering Factors of 2011 in Korea", Journal of Korean Geotechnical Society National Conference, pp.13-18.
  8. Kim, J., Jeong, S., and Richard, R.A. (2012), "Instability of partially saturated soil slopes due to alteration of rainfall pattern", Engineering Geology, Vol.147-148, pp.28-36. https://doi.org/10.1016/j.enggeo.2012.07.005
  9. Kim, Y., Kim, J., Lee, J., and Kim, S. (2013), "A Study on Soil Slope Stability Design Considering Seepage Analysis", Journal of the Korean Geotechnical Society, Vol.29, No.1, pp.135-147. https://doi.org/10.7843/kgs.2013.29.1.135
  10. Korean Geosynthetics Society (2010), 3rd Short Course, Design, Construction, and Test Evaluation for Reinforced Earth Method, pp.39-41, pp.362-364.
  11. Lee, S.H., Jung, Y.H., Lee, I.W., and Yoo, S.J. (2006), "Numerical Modelling of Reinforced Soil Slopes under Railway Load", Journal of the Korean Society for Railway, Vol.9, No.6, pp.753-760.
  12. Schmertmann, G.R., Chouery-Curtis, V.E., Johnson, R.D., and Bonaparte, R. (1987), "Design charts for geogrid-reinforced soil slopes", Proceeding of Geosynthetics '87, New Orleans, USA, pp.108-120.
  13. van Genuchten (1980), "A closed form equation for predicting the hydraulic conductivity of unsaturated soils", Soil Science Society of America Journal, Vol.44, pp.892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  14. Yoo, C.S. and Kim, O.M. (1998), "A Study on Design of Geosynthetically Reinforced Slopes", Proceeding of Koean Society of Civil Engineering, pp.351-354.