DOI QR코드

DOI QR Code

Synthesis Gas Production via Partial Oxidation, CO2 Reforming, and Oxidative CO2 Reforming of CH4 over a Ni/Mg-Al Hydrotalcite-type Catalyst

  • Song, Hoon Sub (Department of Chemical Engineering Education, Chungnam National University) ;
  • Kwon, Soon Jin (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Epling, William S. (Department of Chemical and Biomolecular Engineering, University of Houston) ;
  • Croiset, Eric (Department of Chemical Engineering, University of Waterloo) ;
  • Nam, Sung Chan (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Yi, Kwang Bok (Department of Chemical Engineering Education, Chungnam National University)
  • Received : 2014.03.26
  • Accepted : 2014.05.16
  • Published : 2014.06.30

Abstract

Partial oxidation, $CO_2$ reforming and the oxidative $CO_2$ reforming of $CH_4$ to produce synthesis gas over supported Ni hydrotalcite-type ($Ni_{0.5}Ca_{2.5}Al$ catalyst) catalysts were carried out and the effects of metal supports (i.e.; Mg and Ca) on the formation of a stable double-layer structure on the catalysts were evaluated. The $CH_4$ reforming stability was determined to be affected by the differences in the interaction strength between the active Ni ions and support metal ions. Only a Ni-Mg-Al composition produced a highly stable hydrotalcite-type double-layered structure; while the Ni-Ca-Al-type composition did not. Such structure provides excellent stability for the catalyst (-80% efficiency) as confirmed by the long-term $CO_2$ reforming test (-100 h), while the Ni-Ca-Al catalyst exhibited deactivation phases starting at the beginning of the reaction. The interaction strength between the active metal (Ni) and the supporting components (Mg and Al) was determined by temperature-programed reduction (TPR) analyses. The affinity was also confirmed by the TPR temperature because the Ni-Mg-Al catalyst required a higher temperature to reduce the Ni relative to the Ni-Ca-Al catalyst. The highest initial activity for synthesis gas production was observed for the $Ni_{0.5}Ca_{2.5}Al$ catalyst; however, this activity decreased quickly due to coke formation. The $Ni_{0.5}Ca_{2.5}Al$ catalyst exhibited a high reactivity and was more stable than the other catalysts because it had a higher resistance to coke formation.

합성가스를 생산하기 위한 부분산화, 이산화탄소 리포밍, 메탄에 의한 산화$CO_2$ 리포밍 공정들은 니켈 하이드로탈사이트($Ni_{0.5}Ca_{2.5}Al$) 촉매를 이용하여 수행되었고 안정한 이중층 구조를 형성시키기 위한 금속지지체(Mg, Ca)의 영향에 대해서도 다양한 연구가 진행되었다. 지지체전구물질(Mg, Ca)에 따라 메탄 리포밍의 안정성은 활성니켈이온과 지지체금속이온 사이의 결합강도차이에 의해 영향을 받는다. Ni-Mg-Al 구성체는 가장 안정한 하이드로탈사이트 이중층 구조이지만 Ni-Ca-Al 구성체는 그렇지 않다. 이산화탄소 리포밍 장기테스트에서 Ni-Mg-Al 촉매는 약 100시간 동안 80%의 효율을 유지하면서 탁월한 안정성을 보였지만 Ni-Ca-Al 촉매는 반응초기에 불활성화됨을 확인할 수 있었다. 활성금속 Ni과 지지체 Mg-Al 사이의 결합강도를 확인하기 위해 승온 환원(temperature-programmed reduction, TPR) 분석을 시행하였다. 이를 통해 Ni-Mg-Al 촉매가 Ni-Ca-Al 촉매보다 Ni의 환원온도가 더 높음을 확인할 수 있었다. $Ni_{0.5}Ca_{2.5}Al$ 촉매는 가장 높은 초기반응성을 보였지만 코크형성으로 인해 반응성이 빠르게 감소하였다. 결론적으로 $Ni_{0.5}Ca_{2.5}Al$ 촉매가 코크형성에 대한 강한 저항성을 갖고 있기 때문에 다른 촉매들보다 높은 반응성과 안정성을 갖는 것으로 보여진다.

Keywords

References

  1. Gonzalez, A. R., Asencios, Y. J. O., Assaf, E. M., and Assaf, J. M., "Dry Reforming of Methane on Ni-Mg-Al Nano-Spheroid Oxide Catalysts Prepared By the Sol-gel Method from Hydrotalcite-like Precursors," Appl. Surf. Sci., 280, 876-887 (2013). https://doi.org/10.1016/j.apsusc.2013.05.082
  2. Tang, S., Lin, J., and Tan, K. L., "Partial Oxidation of Methane to Syngas over Ni/MgO, Ni/CaO and $Ni/CeO_2$," Catal. Lett., 51, 169-175 (1998). https://doi.org/10.1023/A:1019034412036
  3. Di, M., Dajiang, M., Xuan, L., Maochu, G., and Yaoqiang, C., "Partial Oxidation of Methane to Syngas over Monolithic Ni/gama-$A1_2O_3$ Catalyst-Effects of Rare Earths And other Basic Promoters," J. Rare Earths, 24, 451-455 (2006). https://doi.org/10.1016/S1002-0721(06)60142-7
  4. Choudhary, V. R., Rane, V. H., and Rajput, A. M., "Beneficial Effects of Cobalt Addition To Ni-catalysts for Oxidative Conversion of Methane to Syngas," Appl. Catal. A Gen., 162, 235-238 (1997). https://doi.org/10.1016/S0926-860X(97)00101-4
  5. Shinozuka, Y., Ohishi, Y., Shishido, T., Takaki, K., and Takehira, K., "Nickel Containing Mg-Al Hydrotalcite-type Anionic Clay Catalyst for the Oxidation of Alcohols with Molecular Oxygen," J. Mol. Catal. A Chem., 236, 206-215 (2005). https://doi.org/10.1016/j.molcata.2005.04.035
  6. Bhattacharyya, A., Chang, V. W., and Schumacher, D. J., "$CO_2$ Reforming of Methane to Syngas I: Evaluation of Hydrotalcite Clay-derived Catalysts," Appl. Clay Sci., 13, 317-328 (1998). https://doi.org/10.1016/S0169-1317(98)00030-1
  7. Bartholomew, C. H., "Mechanisms of Catalyst Deactivation," Appl. Catal. A Gen., 212, 17-60 (2001). https://doi.org/10.1016/S0926-860X(00)00843-7
  8. Ito, M., Tagawa, T., and Goto, S., "Suppression of Carbonaceous Depositions on Nickel Catalyst for the Carbon Dioxide Reforming of Methane," Appl. Catal. A Gen., 177, 15-23 (1999). https://doi.org/10.1016/S0926-860X(98)00251-8
  9. Takehira, K., Shishido, T., Wang, P., Kosaka, T., and Takaki, K., "Autothermal Reforming of CH4 over Supported Ni Catalysts Prepared from Mg-Al Hydrotalcite-like Anionic Clay," J. Catal., 221, 43-54 (2004). https://doi.org/10.1016/j.jcat.2003.07.001
  10. Sukenobu, M., Morioka, H., Kondo, M., Wang, Y., Takaki, K., and Takehira, K., "Partial Oxidation of Methane over Ni/ Mg-Al Oxide Catalysts Prepared by Solid Phase Crystallization Method from Mg-Al Hydrotalcite-like Precursors," Appl. Catal. A Gen., 223, 35-42 (2002). https://doi.org/10.1016/S0926-860X(01)00732-3
  11. Tomishige, K., Nurunnabi, M., Maruyama, K., and Kunimori, K., "Effect of Oxygen Addition to Steam and Dry Reforming of Methane on Bed Temperature Profile over Pt and Ni Catalysts," Fuel Process. Technol., 85, 1103-1120 (2004). https://doi.org/10.1016/j.fuproc.2003.10.014
  12. Basini, L., Amore, M. D, Fornasari, G., Guarinoni, A., Matteuzzi, D., Del Piero, G., Trifiro, F., and Vaccari, A., "Ni/ Mg/Al Anionic Clay Derived Catalysts for the Catalytic Partial Oxidation of Methane Residence Time Dependence of the Reactivity Features," J. Catal., 173, 247-256 (1998). https://doi.org/10.1006/jcat.1997.1942
  13. Inaba, M., Tsunoda, T., Suzuki, K., Takehira, K., and Hayakawa, T., "Combined Partial Oxidation and Dry Reforming of Methane to Synthesis Gas over Noble Metals Supported on Mg-Al Mixed Oxide," Appl. Catal. A Gen., 275, 149-155 (2004). https://doi.org/10.1016/j.apcata.2004.07.030
  14. Sukenobu, M., Morioka, H., Furukawa, R., Shirahase, H., and Takehira, K., "$CO_2$ Reforming of $CH_4$ over Ni/Mg-Al Oxide Catalysts Prepared by Solid Phase Crystallization Method from Mg-Al Hydrotalcite-like Precursors," Catal. Lett., 73, 21-26 (2001).
  15. Olsbye, U., Akporiaye, D., Rytter, E., Ronnekleiv, M., and Tangstad, E., "On the Stability of Mixed $M^{2+}/M^{3+}$ Oxides," Appl. Catal. A Gen., 224, 39-49 (2002). https://doi.org/10.1016/S0926-860X(01)00740-2
  16. Shiraga, M., Atake, I., Shishido, T., Oumi, Y., Sano, T., and Takehira, K., "Partial Oxidation of Propane over Ru Promoted Ni/Mg(Al)O Catalysts: Self-activation and Prominent Effect of Reduction-oxidation Treatment of the Catalyst," Appl. Catal. A Gen., 321, 155-164 (2007). https://doi.org/10.1016/j.apcata.2007.01.043
  17. Oyama, S. T., "Novel Catalysts for Advanced Hydroprocessing: Transition Metal Phosphides," J. Catal., 216, 343-352 (2003). https://doi.org/10.1016/S0021-9517(02)00069-6
  18. Bradford, M. C. J., and Vannice, M. A., "$CO_2$ Reforming of $CH_4$ over Supported Pt Catalysts," J. Catal., 171, 157-171 (1998).
  19. Ruckenstein, E., and Wang, H. Y., "Combined Catalytic Partial Oxidation and $CO_2$ Reforming of Methane over Supported Cobalt Catalysts," Catal. Lett., 73, 99-105 (2001).
  20. Amin, N. A. S., and Yaw, T. C., "Thermodynamic Equilibrium Analysis of Combined Carbon Dioxide Reforming with Partial Oxidation of Methane to Syngas," Int. J. Hydro. Energy, 32, 1789-1798 (2007).
  21. Zhu, Y.-A., Chen, D., Zhou, X.-G., and Yuan, W.-K., "DFT Studies of Dry Reforming of Methane on Ni Catalyst," Catal. Today, 148, 260-267 (2009). https://doi.org/10.1016/j.cattod.2009.08.022
  22. Zhang, Y., Xiong, G., Sheng, S., and Yang, W., "Deactivation Studies over NiO/${\gamma}$-$Al_2O_3$ Catalysts for Partial Oxidation of Methane to Syngas," Catal. Today, 63, 517-522 (2000). https://doi.org/10.1016/S0920-5861(00)00498-3
  23. Ginsburg, J. M., Pin, J., Solh, T. El, and Lasa, H. I. De., "Coke Formation over A Nickel Catalyst Under Methane Dry Reforming Conditions: Thermodynamic and Kinetic Models," Ind. Eng. Chem. Res., 44, 4846-4854 (2005). https://doi.org/10.1021/ie0496333
  24. Hu, Y. H., and Ruckenstein, E., "Temperature-programmed Desorption of CO Adsorbed on NiO/MgO," J. Catal., 311, 306-311 (1996).
  25. Arena, F., Frusteri, F., Parmaliana, A., Plyasova, L., and Shmakov, N., "Effect of Calcination on the Structure of Ni/MgO Catalyst: an X-ray Diffraction Study," J. Chem. Soc., Faraday Trans., 92, 469-471 (1996). https://doi.org/10.1039/ft9969200469
  26. Swierczynski, D., Libs, S., Courson, C., and Kiennemann, A., "Steam Reforming of Tar from a Biomass Gasification Process over Ni/olivine Catalyst Using Toluene as a Model Compound," Appl. Catal. B Environ., 74, 211-222 (2007). https://doi.org/10.1016/j.apcatb.2007.01.017
  27. Ruckenstein, E., and Hu, Y. H., "Carbon Dioxide Reforming of Methane over Nickel/Alkaline Earth Metal Oxide Catalysts," Appl. Catal. A Gen., 133, 149-161 (1995). https://doi.org/10.1016/0926-860X(95)00201-4
  28. Shimizu, Y., Sukenobu, M., Ito, K., Tanabe, E., Shishido, T., and Takehira, K., "Partial Oxidation of Methane to Synthesis Gas over Supported Ni Catalysts Prepared from Ni-Ca/ Al-layered Double Hydroxide," Appl. Catal. A Gen., 215, 11-19 (2001). https://doi.org/10.1016/S0926-860X(01)00525-7

Cited by

  1. Acidic Properties of Mg-Al Mixed Oxides in the Dehydration of iso-Propanol vol.20, pp.3, 2014, https://doi.org/10.7464/ksct.2014.20.3.330
  2. 플라즈마-축열버너 부분산화 개질장치 vol.32, pp.1, 2014, https://doi.org/10.7316/khnes.2021.32.1.68
  3. Development of a Combined Plasma‐Matrix Reformer for Solid Oxide Fuel Cell Application vol.45, pp.1, 2014, https://doi.org/10.1002/ceat.202100358