DOI QR코드

DOI QR Code

Effect of Desorption Pressure on Adsorption and Desorprtion Breakthrough Behaviors of Carbon Dioxide with Zeolite 3A, 4A, 5A, and 13X Pellets

제올라이트 3A, 4A, 5A, 13X 펠렛의 탈착 압력에 따른 이산화탄소 흡·탈착 파과특성

  • Sim, Jungbo (Graduate School of Energy Science and Technology.The Department of Energy Science and Technology) ;
  • Noh, Young-Kyoung (Graduate School of Chemical & Biomolecular Engineering, Yonsei University) ;
  • Park, Young Cheol (Korea Institute of Energy Research) ;
  • Kim, Hyunuk (Korea Institute of Energy Research) ;
  • Ryu, Ho-Jung (Korea Institute of Energy Research) ;
  • Cho, Churl-Hee (Graduate School of Energy Science and Technology.The Department of Energy Science and Technology) ;
  • Moon, Jong-Ho (Korea Institute of Energy Research)
  • 심중보 (충남대학교 에너지과학기술 대학원.에너지과학기술학과) ;
  • 노영경 (연세대학교 화공생명공학과) ;
  • 박영철 (한국에너지기술연구원) ;
  • 김현욱 (한국에너지기술연구원) ;
  • 류호정 (한국에너지기술연구원) ;
  • 조철희 (충남대학교 에너지과학기술 대학원.에너지과학기술학과) ;
  • 문종호 (한국에너지기술연구원)
  • Received : 2014.03.04
  • Accepted : 2014.03.21
  • Published : 2014.06.30

Abstract

The effect of desorption pressure on $CO_2/N_2$ breakthrough behaviors for 4 different adsorbents was studied at a fixed bed. Zeolite 3A, 4A, 5A, and 13X pellets were used as adsorbents. Cyclic operations were executed with varying desorption pressure from vacuum (0 bar) to 3 bar while other conditions such as adsorption step pressure (3 bar), temperature (293 K), composition ($CO_2:N_2=10:90$vol%) and flow rate (400 ccm) were fixed at constant values. Each adsorption and desorption step was set as 80 min, which totaled up to 160 min per a cycle. 5 cycles with adsorption and desorption steps were run overall. After the experiment, breakthrough time, saturation time, and adsorption amount were measured and compared in order to find an optimum adsorbent and a proper operating condition for a post combustion $CO_2$ capture process.

본 연구에서는 고정탑 반응기(높이 30 cm, 내경 1 cm)에 서로 다른 4종류의 제올라이트(zeolite) 시료를 충전하여, 탈착압력이 $CO_2$ 흡착파과 및 탈착파과 거동에 미치는 영향을 연구하였다. 흡착제로는 상용물질인 제올라이트 3A, 4A, 5A, 13X 펠렛(pellet)을 사용하였다. 연속조작(cyclic operation)실험은 흡착-탈착 순으로 5회 반복하여 실험하였으며, 흡착 및 탈착 시간은 각각 80분이었다. 탈착압력이 연속조작거동에 미치는 영향을 살펴보기 위해 탈착 압력(혹은 재생 압력)을 진공(0 bar)에서 3 bar까지 변경하며 실험을 진행하였다. 흡착압력(3 bar), 온도(293 K), 농도($CO_2:N_2=10:90$vol%)와 유량(400 ccm) 조건은 고정하였다. 파과시간(breakthrough time), 포화시간(saturation time), 재생시간(regeneration time), 흡착량 그리고 탑 내 온도변화 등을 측정하였다. 상기 변수 실험을 통하여 연소 후 $CO_2$ 포집에 적합한 흡착제 및 운전조건을 찾고자 하였다.

Keywords

References

  1. IEA, "$CO_2$ Emissions from Fuel Combustion, Highlights," IEA Statistics (2012 Edition), October, 2012.
  2. Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A., "Climate Change 2001 : The Scientific Basis," UK : Cambridge University Press, Cambridge (2001).
  3. Merel, J., Clausse, M., and Meunier, F., "Experimental Investigation on $CO_2$ Post-combustion Capture by Indirect Thermal Swing Adsorption Using 13X and 5A Zeolites," Ind. Eng. Chem. Res., 47, 209-215 (2008). https://doi.org/10.1021/ie071012x
  4. Mason, J. A., Sumida, K., Herm, Z. R., Krishna, R., and Long, J. R., "Evaluating Metal-organic Frameworks for Post-combustion Carbon Dioxide Capture via Temperature Wing Adsorption," Energy Environ. Sci., 4, 3030-3040 (2011). https://doi.org/10.1039/c1ee01720a
  5. Ko, D., Siriwardane, R. V., and Biegler, L. T., "Optimization of a Pressure-swing Adsorption Process Using Zeolite 13X for $CO_2$ Sequestration," Ind. Eng. Chem. Res., 42, 339-348 (2003). https://doi.org/10.1021/ie0204540
  6. Siriwardane, R. V., Shen, M., and Fisher, E. P., "Adsorption of $CO_2$ on Zeolites at Moderate Temperatures," Energy Fuels, 19, 1153-1159 (2005). https://doi.org/10.1021/ef040059h
  7. Xiao, P., Zhang, J., Webley, P., Li, G., Singh, R., and Todd, R., "Capture of $CO_2$ from Flue Gas Streams with Zeolite 13X by Vacuum-pressure Swing Adsorption," Adsorption, 14, 575-582 (2008). https://doi.org/10.1007/s10450-008-9128-7
  8. Lee, S. J., Ahn, H., Jee, J. G., Kim, M. B., Moon, J. H., Bea, Y. S., and Lee, C. H., "Comparison of PSA and VSA Processes for Air Separation," Clean Technol., 6(2), 101-109 (2004).
  9. Bai, B. C., Cho, S., Yu, H. R., Yi, K. B., Kim, K. D., and Lee, Y. S., "Effects of Aminated Carbon Molecular Sieves on Breakthrough Curve Behavior in $CO_2/CH_4$ Separation," J. Indu. Eng. Chem., 19, 776-783 (2013). https://doi.org/10.1016/j.jiec.2012.10.016
  10. He, T., Li, Q., and Ju, Y., "Adsorption and Desorption Experimental Study of Carbon Dioxide/methane Mixture Gas on 13X-type Molecular Sieves," J. Chem. Eng. Jap., 46(12), 811-820 (2013). https://doi.org/10.1252/jcej.13we128
  11. Mofarahi, M., and Shokroo, E. J., "Comparison of Two Pressure Swing Adsorption Processes for air Separation Using Zeolite 5A and Zeolite 13X," Petroleum Coal, 55(3), 216-225 (2013).
  12. Walton, K. S., and LeVan, M. D., "A Novel Adsorption Cycle for $CO_2$ Recovery: Experimental and Theoretical Investigations of a Temperature Swing Compression Process," Sep. Sci. Technol., 41, 485-500 (2006). https://doi.org/10.1080/01496390500524834
  13. Xu, X., Song, C., Andresen, J. M., Miller, B. G., and Scaroni, A. W., "Novel Polyethylenimine-modified Mesoporous Molecular Sieve of MCM-41 Type as High-capacity Adsorbent for $CO_2$ Capture," Energy Fuels, 16, 1463-1469 (2012).
  14. Bonenfant, D., Kharoune, M., Niquette, P., Mimeault, M., and Hausler, R., "Advances in Principal Factors Influencing Carbon Dioxide Adsorption on Zeolites," Sci. Technol. Adv. Mater., 9, 1-7 (2008).
  15. Cavenati, S., Grande, C. A., and Rodrigues, A. E., "Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures," J. Chem. Eng. Data, 49, 1095-1101 (2004). https://doi.org/10.1021/je0498917

Cited by

  1. CO 2 Sorption Characteristics of Various Sorbents in the Bubbling Fluidized-Bed vol.114, 2017, https://doi.org/10.1016/j.egypro.2017.03.1367