DOI QR코드

DOI QR Code

Environmental Impact Assessment of Different Concrete Mixture Proportions according to Domestic Region and Season

국내의 지역 및 계절에 따른 콘크리트 배합별 환경영향평가

  • Seo, Eun-A (Dept. of Architectural Engineering, Kyonggi University Graduate School) ;
  • Yang, Keun-Hyeok (Dept. of Plant.Architectural Engineering, Kyonggi University) ;
  • Jung, Yeon-Back (Dept. of Architectural Engineering, Kyonggi University Graduate School)
  • 서은아 (경기대학교 건축공학과) ;
  • 양근혁 (경기대학교 플랜트.건축공학과) ;
  • 정연백 (경기대학교 건축공학과)
  • Received : 2013.09.27
  • Accepted : 2013.12.06
  • Published : 2014.06.30

Abstract

This study analyzed a comprehensive database including 6331 ready-mixed concrete plant mixtures to quantitatively assess the environmental impact of concrete under mixture proportions variable according to the domestic region and season. The environmental impact indicator includes global warming, photochemical oxidant creation, abiotic resource depletion, acidification, eutrophication and human toxicity, which are determined from categorization, characterization, normalization and weighting process based on Korea lifecycle inventories. The determined environmental impact indicator was also normalized by concrete compressive strength ($f_{ck}$), which is defined as impact index, to calculate the environmental impact per unit strength of 1 MPa. The most common compressive strength of concrete used in the country is estimated to be 24 MPa and 27 MPa. For $f_{ct}$ of 24 MPa, the lowest environmental impact indicator is observed in Ulsan, whereas the highest region is Gwangju and Daegu. This difference according to domestic region is primarily resulted from by the replacement of different supplementary cementitious materials. Furthermore, the impact index of concrete with $f_{ck}$ of 24 MPa is higher by approximately 5% at wintertime than at summertime and standard season. The impact index gradually decreases with the increase of $f_{ck}$ up to 35 MPa, beyond which it remains constant.

지역과 계절이 콘크리트의 전과정 환경영향에 미치는 효과를 정량적으로 평가하기위해 6331개의 레디믹스 콘크리트 배합을 분석하였다. 콘크리트의 환경영향은 국가 생애주기 데이터목록을 기반으로 산출한 환경부하 발생량을 분류화, 특성화, 정규화 및 가중치 단계를 거쳐 6가지 환경영향 범주(지구온난화, 자원고갈, 광화학산화물생성, 산성화, 부영향화, 인간독성)로 나타났다. 단위압축강도에서의 환경영향 지표를 평가하기 위해 콘크리트 압축강도로 무차원한 환경영향 지수로 정의하였다. 국내에서 가장 많이 사용되는 콘크리트의 압축강도($f_{ck}$)는 24 MPa와 27 MPa이다. $f_{ck}$이 24 MPa일때 환경영향 지표가 가장 낮은 지역은 울산이었으며 가장 높은 지역은 광주와 대구였다. 지역에 따른 환경영향의 차이는 지역에 따라 사용되는 혼화재의 종류와 치환율이 다르기 때문이다. 또한 압축강도 24 MPa일때, 콘크리트의 환경영향지수는 동절기가 하절기 및 표준기에 비해 약 5% 높았다. 반면에 콘크리트의 환경영향 지수는 콘크리트 압축강도가 35 MPa을 넘어서면서 계절의 영향은 미미하였다.

Keywords

References

  1. Korea Concrete Institute, Concrete and Environment, Kimoondang Publishing Company, Seoul, 2011, pp. 224-244.
  2. Kim, R. H., Roh, S. J., and Tae, S. H., "A Study on the $LCCO_2$ ssessment according to the Apartment Types using Sustainable Durability Design Method," Journal of Architectural Institute of Korea, Vol. 31, No. 2, 2012, pp. 79-86.
  3. Korea Concrete Institute, Concrete and Environment, Kimoondang Publishing Company, Seoul, 2011, pp. 16-30.
  4. Choi, D. S., Lee, M. E., and Cho, K. H., "Environmental Impact Assessment in Domestic Construction Industry Using Life Cycle Assessment," Korea Institute of Architectural Sustainable Environment and Building Systems, Vol. 6, No. 1, 2012, pp. 46-55.
  5. Task Group 3.3, Environmental Design, International Federation for Structural Concrete (fib), Switzerland, 2004. 74 pp.
  6. Yang, K. H., Seo, E. A., Jung, Y. B., and Tae, S. H., "Effect of Ground Granulated Blast-Furnace Slag on Life-Cycle Environmental Impact of Concrete," Journal of the Korea Concrete Institute, Vol. 26, No. 1, 2014, pp. 13-21. (doi: http://dx.doi.org/10.4334/JKCI.2014.26.1.013)
  7. ICC, International Green Construction Code, International Code Council, USA, 2012, 147 pp.
  8. ISO, Environmental Management-Life Cycle Assessment-Principles and Framework, ISO 14040, International Standardisation Organisation (ISO), 2006, 28 pp.
  9. The Ministry of Environment, Method of Environmental Impact Assessment Index of Korea, 2003, 166 pp.
  10. Korea LCI Database Information Network, http://www.edp.or.kr/lcidb. (access on September 31, 2013)
  11. Sakai, K. and Kawai, K., JSCE Guidelines for Concrete No.7: Recommendation of Environmental Performance Verification for Concrete Structures, Japan Society of Civil Engineering, 2006, 28 pp.
  12. Korea Concrete Institute, Environmental Impact and $CO_2$ Evaluation of Concrete Structure, Kimmondang Publishing Company, Seoul, 2013, 123-130.
  13. Han, M., C., "Estimation of the Strength Development of the Super Retarding Concrete Incorporating Fly Ash and Blast Furnace Slag," Journal of The Korea Institute of Building Construction, 2008, Vol. 8, No. 5, pp. 199-24. https://doi.org/10.5345/JKIC.2008.8.5.119
  14. Korea Concrete Institute, New Concrete Engineering, Kimoondang Publishing Company, Seoul, 2011, pp. 671-686.