DOI QR코드

DOI QR Code

A review of rotorcraft Unmanned Aerial Vehicle (UAV) developments and applications in civil engineering

  • Liu, Peter (Department of Electrical Engineering, Tamkang University) ;
  • Chen, Albert Y. (Department of Civil Engineering, National Taiwan University) ;
  • Huang, Yin-Nan (Department of Civil Engineering, National Taiwan University) ;
  • Han, Jen-Yu (Department of Civil Engineering, National Taiwan University) ;
  • Lai, Jihn-Sung (Hydrotech Research Institute, National Taiwan University) ;
  • Kang, Shih-Chung (Department of Civil Engineering, National Taiwan University) ;
  • Wu, Tzong-Hann (Department of Civil Engineering, National Taiwan University) ;
  • Wen, Ming-Chang (Department of Civil Engineering, National Taiwan University) ;
  • Tsai, Meng-Han (Center for Weather Climate and Disaster Research, National Taiwan University)
  • Received : 2013.12.19
  • Accepted : 2014.04.12
  • Published : 2014.06.25

Abstract

Civil engineers always face the challenge of uncertainty in planning, building, and maintaining infrastructure. These works rely heavily on a variety of surveying and monitoring techniques. Unmanned aerial vehicles (UAVs) are an effective approach to obtain information from an additional view, and potentially bring significant benefits to civil engineering. This paper gives an overview of the state of UAV developments and their possible applications in civil engineering. The paper begins with an introduction to UAV hardware, software, and control methodologies. It also reviews the latest developments in technologies related to UAVs, such as control theories, navigation methods, and image processing. Finally, the paper concludes with a summary of the potential applications of UAV to seismic risk assessment, transportation, disaster response, construction management, surveying and mapping, and flood monitoring and assessment.

Keywords

Acknowledgement

Supported by : National Science Council (NSC) of Taiwan

References

  1. Abdelkader, M., Shaqura, M., Claudel, C.G. and Gueaieb, W. (2013), "A UAV based system for real time flash flood monitoring in desert environments using Lagrangian microsensors", Proceedings of the 2013 International Conference on Unmanned Aircraft Systems, Atlanta, USA, May.
  2. Abdessameud, A. and Tayebi, A. (2010), "Global trajectory tracking control of VTOL-UAVs without linear velocity measurements", Automatica, 46(6), 1053-1059. https://doi.org/10.1016/j.automatica.2010.03.010
  3. Ajibola I.I. and Mansor S.B. (2013). "UAV-based imaging for environmental sustainability - flash floods control perspective", Proceedings of FIG Working Week 2013-Environment for Sustainability, Abuja, Nigeria, May.
  4. Akinc, M., Bekris, K.E., Chen, B.Y., Ladd, A.M., Plaku, E. and Kavraki, L.E. (2005), "Probabilistic roadmaps of trees for parallel computation of multiple query roadmaps", Springer Tracts in Adv. Robotics, 15, 80-89. https://doi.org/10.1007/11008941_9
  5. Alexis, K., Nikolakopoulos, G. and Tzes, A. (2011), "Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances", Control Eng. Pract., 19(10), 1195-1207. https://doi.org/10.1016/j.conengprac.2011.06.010
  6. Allan, M.G., Hamilton, D.P., Hicks, B.J. and Brabyn, L. (2011), "Landsat remote sensing of chlorophyll a concentrations in central North Island lakes of New Zealand", Int. J. Remote Sens., 32(7), 2031-2055.
  7. Aouf, N., Sazdovski, V., Tsourdos, A. and White, B.A. (2007), "Low altitude airborne SLAM with INS aided vision system", Proceedings of AIAA Guidance, Navigation and Control Conference. Reston, VA, USA: AIAA, August.
  8. Applied Technology Council (ATC). (2012), Seismic Performance Assessment of Buildings. Volume 1 -Methodology, FEMA P-58-1, Federal Emergency Management Agency, Washington, D.C., USA.
  9. Artieda, J., Sebastian, J.M., Campoy, P., Correa, J.F., Mondragon, I.F., Martinez, C. and Olivares, M. (2009), "Visual 3-D SLAM from UAVs", J. Intell. Robot. Syst., 55(4-5), 299-321. https://doi.org/10.1007/s10846-008-9304-8
  10. Azinheira, J.R. and Moutinho, A. (2008), "Hover control of an UAV with backstepping design including input saturations", IEEE T. Contr. Syst. T., 16(3), 517-526. https://doi.org/10.1109/TCST.2007.908209
  11. Bailey, T. and Durrant-Whyte, H. (2006), "Simultaneous localization and mapping: Part II", IEEE Robot. Autom. Mag., 13(3), 108-117. https://doi.org/10.1109/MRA.2006.1678144
  12. Barber, D.B., Redding, J.D., McLain, T.W., Beard, R.W. and Taylor, C.N. (2006), "Vision-based target geo-location using a fixed-wing miniature air vehicle", J. Intell. Robot. Syst., 47(4), 361-382. https://doi.org/10.1007/s10846-006-9088-7
  13. Barraquand, J., Langlois, B. and Latombe, J.C. (1992), "Numerical potential field techniques for robot path planning", IEEE T. Syst. Man Cy., 22(2), 224-241. https://doi.org/10.1109/21.148426
  14. Bay, H., Ess, A., Tuytelaars, T. and Van Gool, L. (2008), "Speeded-up robust features (SURF)", Comput. Vis. image Und., 110(3), 346-359. https://doi.org/10.1016/j.cviu.2007.09.014
  15. Bayili, S. and Polat, F. (2011), "Limited-damage A*: a path search algorithm that considers damage as a feasibility criterion", Knowl. -Based Syst., 24(4), 501-512. https://doi.org/10.1016/j.knosys.2010.12.009
  16. Bernard, M., Kondak, K., Maza, I. and Ollero, A. (2011), Autonomous transportation and deployment with aerial robots for search and rescue missions", J. Field Robotics, 28(6), 914-931. https://doi.org/10.1002/rob.20401
  17. Borenstein, J. and Koren, Y. (1991), "The vector field histogram--Fast obstacle avoidance for mobile robots", IEEE T. Robot. Autom. Mag., 7(3), 278-288. https://doi.org/10.1109/70.88137
  18. Botea, A., Muller, M. and Schaeffer, J. (2004), "Near optimal hierarchical path-finding", J. Game Development, 1(1), 7-28.
  19. Bruggemann, T.S., Ford, J.J. and Walker, R.A. (2011), "Control of aircraft for inspection of linear infrastructure", IEEE T. Contr. Syst. T., 19(6), 1397-1409. https://doi.org/10.1109/TCST.2010.2093937
  20. Buskey, G., Wyeth, G. and Roberts, J. (2001), "Autonomous helicopter hover using an artificial neural network", Robotics and Automation, 2001. Proceedings of the 2001 ICRA. IEEE International Conference on, Seoul Korea, May.
  21. Cagigas, D. (2005) "Hierarchical D* algorithm with materialization of costs for robot path planning", Robot. Auton. Syst., 52(2-3), 190-208. https://doi.org/10.1016/j.robot.2005.04.005
  22. Cai, G., Chen, B.M., Peng, K., Dong, M. and Lee, T.H. (2008), "Modeling and control of the yaw channel of a UAV helicopter", IEEE T. Ind. Electron., 55(9), 3426-3434. https://doi.org/10.1109/TIE.2008.926780
  23. Campoy, P., Correa, J.F., Mondragon, I., Martinez, C., Olivares, M., Mejias, L. and Artieda, J. (2009), "Computer vision onboard UAVs for civilian tasks", J. Intell. Robot. Syst., 54(1-3), 105-135. https://doi.org/10.1007/s10846-008-9256-z
  24. Carsten, J., Ferguson, D. and Stentz, A. (2006), "3D field D*: improved path planning and replanning in three dimensions", Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, October.
  25. Chang, H.K., Tan, Y.C., Lai, J.S., Pan, T.Y., Liu, T.M. and Tung, C.P. (2013), "Improvement of a drainage system for flood management with assessment of the potential effects of climate change", Hydrolog. Sci. J., 58(8), 1581-1597. https://doi.org/10.1080/02626667.2013.836276
  26. Chung, H.Y., Hou, C.C. and Lu, Z.R. (2013), "Wheeled robot navigation and local-map building in unknown environments", Proceedings of the 2013 CACS International Automatic Control Conference (CACS), Nantou, Taiwan, December.
  27. Coifman, B., McCord, M., Mishalani, R.G., Iswalt, M. and Ji, Y. (2006), "Roadway traffic monitoring from an unmanned aerial vehicle", IEE Proc. Intel. Transport Syst., 153(1), 11-20. https://doi.org/10.1049/ip-its:20055014
  28. Cutler, M. and How, J.P. (2012), "Actuator constrained trajectory generation and control for variable-pitch quadrotors", Proceeding of the AIAA Guidance, Navigation, and Control Conference and Co-located Conferences, Minneapolis, Minnesota, August.
  29. Daniel, K., Nash, A., Koenig, S. and Felner, A. (2010), "Theta*: Any-angle path planning on grids", J. Artif. Intell. Res., 39, 533-579.
  30. De Filippis, L., Guglieri, G. and Quagliotti, F. (2011), "A minimum risk approach for path planning of UAVs", J. Intell. Robot.Syst., 61(1-4), 203-219. https://doi.org/10.1007/s10846-010-9493-9
  31. Deng, Y., Beaujean, P.P.J., An, E. and Carlson, E.A. (2008), "A path planning control strategy for search-classify task using multiple cooperative underwater vehicles", Proceedings of the OCEANS 2008, Quebec City, Canada, September.
  32. Dhodhi, M.K., Saghri, J.A., Ahmad, I. and Ul-Mustafa, R. (1999), "D-ISODATA: a distributed algorithm for unsupervised classification of remotely sensed data on network of workstations", J. Parallel Distr. Com., 59(2), 280-301. https://doi.org/10.1006/jpdc.1999.1573
  33. Dierks, T. and Jagannathan, S. (2010), "Output feedback control of a quadrotor UAV using neural networks", IEEE T. Neural Networ., 21(1), 50-66. https://doi.org/10.1109/TNN.2009.2034145
  34. Dobson, R.J., Brooks, C., Roussi, C. and Colling, T. (2013), "Developing an unpaved road assessment system for practical deployment with high-resolution optical data collection using a helicopter UAV", Proceedings of the Unmanned Aircraft Systems (ICUAS), 2013 International Conference on, Atlanta, Georgia, USA, May.
  35. Donoghue, D.N.M. and Mironnet, N. (2002), "Development of an integrated geographical information system prototype for coastal habitat monitoring", Comput. Geosci., 28(1), 129-141. https://doi.org/10.1016/S0098-3004(01)00021-8
  36. Durrant-Whyte, H. and Bailey, T. (2006), "Simultaneous localization and mapping: Part I", IEEE Robot. Autom. Mag., 13(2), 99-108.
  37. Eun, Y. and Bang, H. (2009), "Cooperative task assignment/path planning of multiple unmanned aerial vehicles using genetic algorithm", J. Aircraft, 46(1), 338-343. https://doi.org/10.2514/1.38510
  38. Ferguson, D. and Stentz, A. (2006), "Using interpolation to improve path planning the field D* algorithm", J. Field Robotics, 23(2), 79-101. https://doi.org/10.1002/rob.20109
  39. Fujimura, K. and Samet, H. (1989), "Hierarchical strategy for path planning among moving obstacles", IEEE T. Robot. Autom. , 5(1), 61-69. https://doi.org/10.1109/70.88018
  40. Fujita, I. and Hino, T. (2003), "Unseeded and seeded PIV measurements of river flows videotaped from a helicopter", J. Visualization, 6(3), 245-252. https://doi.org/10.1007/BF03181465
  41. Ge, S.S. and Cui, Y.J. (2000), "New potential functions for mobile robot path planning", IEEE T. Robot. Autom., 16(5), 615-620. https://doi.org/10.1109/70.880813
  42. Ge, S.S. and Cui, Y.J. (2002), "Dynamic motion planning for mobile robots using potential field method", Auton. Robot., 13(3), 207-222. https://doi.org/10.1023/A:1020564024509
  43. Guo, J. and Liu, L. (2010), "A study of improvement of D* algorithm for mobile robot path planning in partial unknown environment", Adv. Syst. Sci. Appl., 10(1), 148-155.
  44. Grocholsky, B., Keller, J., Kumar, V. and Pappas, G. (2006), "Cooperative air and ground surveillance", IEEE T. Robot. Autom. Mag., 13(3), 16-26.
  45. Guenard, N., Hamel, T. and Mahony, R. (2008), "A practical visual servo control for an unmanned aerial vehicle", IEEE T. Robot., 24(2), 331-340. https://doi.org/10.1109/TRO.2008.916666
  46. Hamel, T. and Mahony, R. (2002), "Visual servoing of an under-actuated dynamic rigid-body system: an image-based approach", IEEE T.Robot., 18(2), 187-198. https://doi.org/10.1109/TRA.2002.999647
  47. Han, J.Y., Chou, J.Y. and Ko, Y.Y. (2012), "Closed-form solution for relative rotations between image pairs using normal vectors of epipolar planes", J. Survey. Eng., 138(1), 25-30. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000058
  48. Hardin, P. and Jensen, R. (2011), "Small-scale unmanned aerial vehicles in environmental remote sensing: Challenges and opportunities", GISci. Remote Sens., 48(1), 99-111. https://doi.org/10.2747/1548-1603.48.1.99
  49. Harman, L.J., Shama, U., Dand, K. and Kidwell, B. (2002), "Remote sensing and spatial information for transportation demand management (TDM) assessment", Proceedings of the Pecora 15/Land Satellite Information Information IV/ISPRS Commission I/FIEOS 2002 Conference, Denver, Colorado, USA, November.
  50. Hart, W.S. and Gharaibeh, N.G. (2011), "Use of micro unmanned aerial vehicles in roadside condition surveys", Proceedings of the 1st Congress of the Transportation and Development Institute of ASCE, Chicago, Illinois, USA, March.
  51. Heintz, F., Rudol, P. and Doherty, P. (2007), "From images to traffic behavior - A UAV tracking and monitoring application", Proceedings of the 10th International Conference on Information Fusion, Quebec, Canada, July.
  52. Heipke, C. (1997), "Automation of interior, relative, and absolute orientation", ISPRS J. Photogramm., 52(1), 1-19. https://doi.org/10.1016/S0924-2716(96)00029-9
  53. Hong, S.K. (2003), "Fuzzy logic based closed-loop strapdown attitude system for unmanned aerial vehicle (UAV)", Sensor. Actuat. A - Phys., 107(2), 109-118. https://doi.org/10.1016/S0924-4247(03)00353-4
  54. Hsu, D., Latombe, J.C. and Kurniawati, H. (2006), "On the probabilistic foundations of probabilistic roadmap planning", Int. J. Robot. Res., 25(7), 627-643. https://doi.org/10.1177/0278364906067174
  55. Hsu, D., Latombe, J.C. and Motwani, R. (1999), "Path planning in expansive configuration spaces", Int. J. Comput. Geom. Ap., 9(4-5), 495-512. https://doi.org/10.1142/S0218195999000285
  56. Hu, J.P., Wu, W.B. and Tan, Q.L. (2012), "Application of unmanned aerial vehicle remote sensing for geological disaster reconnaissance along transportation lines: a case study", Appl. Mech. Mater., 226-228, 2376-2379 https://doi.org/10.4028/www.scientific.net/AMM.226-228.2376
  57. Huh, S. and Shim, D.H. (2010), "A vision-based automatic landing method for fixed-wing UAVs", J. Intell. Robot. Syst., 57(1-4), 217-231. https://doi.org/10.1007/s10846-009-9382-2
  58. Jensen, J.R. (1996), Introductory digital image processing: a remote sensing perspective, (2nd Ed.), Prentice Hall, Upper Saddle River, New Jersey, USA.
  59. Jia, Q., Chen, G., Sun, H. and Zheng, S. (2010), "Path planning for space manipulator to avoid obstacle based on A* algorithm", Jixie Gongcheng Xuebao/J. Mech. Eng., 46(13), 109-115.
  60. Johnson, E.N. and Kannan, S.K. (2005), "Adaptive trajectory control for autonomous helicopters", J. Guid. Control Dynam., 28(3), 524-538. https://doi.org/10.2514/1.6271
  61. Johnson, E.N. and Mishra, S. (2002), "Flight simulation for the development of an experimental UAV", Proceedings of the AIAA modeling and simulation technologies conference, Monterey, California, USA, August.
  62. Kadmiry, B. and Driankov, D. (2004), "A fuzzy flight controller combining linguistic and model-based fuzzy control", Fuzzy Set. Syst., 146(3), 313-347. https://doi.org/10.1016/j.fss.2003.07.002
  63. Kala, R., Shukla, A. and Tiwari, R. (2011), "Robotic path planning using evolutionary momentum-based exploration", J. Exp. Theor. Artif. In., 23(4), 469-495. https://doi.org/10.1080/0952813X.2010.490963
  64. Kang, Y. and Hedrick, J.K. (2009), "Linear tracking for a fixed-wing UAV using nonlinear model predictive control", IEEE T. Control Syst. Technol., 17(5), 1202-1210. https://doi.org/10.1109/TCST.2008.2004878
  65. Karimoddini, A., Lin, H., Chen, B.M. and Heng Lee, T. (2011), "Hybrid formation control of the unmanned aerial vehicles", Mechatronics, 21(5), 886-898. https://doi.org/10.1016/j.mechatronics.2010.09.007
  66. Kavraki, L.E. Svestka, P., Latombe, J.C. and Overmars, M.H. (1996), "Probabilistic roadmaps for path planning in high-dimensional configuration spaces", IEEE T. Robot. Autom., 12(4), 566-580. https://doi.org/10.1109/70.508439
  67. Keuchel, J., Naumann, S., Heiler, M. and Siegmund, A. (2003), "Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data", Remote Sens. Environ., 86(4), 530-541. https://doi.org/10.1016/S0034-4257(03)00130-5
  68. Kim, B.S. and Calise, A.J. (1997), "Nonlinear flight control using neural networks", J. Guid. Control Dynam., 20(1), 26-33. https://doi.org/10.2514/2.4029
  69. Kim, H.J. and Shim, D.H. (2003), "A flight control system for aerial robots: Algorithms and experiments", Control Eng. Pract., 11(12), 1389-1400. https://doi.org/10.1016/S0967-0661(03)00100-X
  70. Kim, H.J., Shim, D.H. and Sastry, S. (2002), "Flying robots: modeling, control and decision making", Proceeding of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, USA, May.
  71. Kobayashi, K. and Mori, C. (1997), "Relations between the coefficients in the projective transformation equations and the orientation elements of a photograph", Photogramm. Eng. Rem., 63(9), 1121-1127.
  72. Kotsiantis, S.B. (2007), "Supervised machine learning: a review of classification techniques", Informatica (Ljubljana), 31(3), 249-268.
  73. Kulkarni, M. and Agrawal, V.D (2011), "Architectural power management for battery lifetime optimization in portable systems", Proceedings of the 15 th VLSI Design And Test Symposium 2011, Pune, India, July.
  74. Kurnaz, S., Cetin, O. and Kaynak, O. (2009), "Fuzzy logic based approach to design of flight control and navigation tasks for autonomous unmanned aerial vehicles", J. Intell. Robot. Syst., 54(1-3), 229-244. https://doi.org/10.1007/s10846-008-9263-0
  75. Kurnaz, S., Cetin, O. and Kaynak, O. (2010), "Adaptive neuro-fuzzy inference system based autonomous flight control of unmanned air vehicles", Exp. Syst. Appl., 37(2), 1229-1234. https://doi.org/10.1016/j.eswa.2009.06.009
  76. Laliberte, A.S and Rango, A. (2009), "Texture and scale in object-based analysis of subdecimeter resolution unmanned aerial vehicle (UAV) imagery", IEEE T. Geosci. Remote., 47(3), 761-770. https://doi.org/10.1109/TGRS.2008.2009355
  77. Lawrence, D.A., Frew, E.W. and Pisano, W.J. (2008), "Lyapunov vector fields for autonomous unmanned aircraft flight control", J. Guid.Control Dynam., 31(5), 1220-1229. https://doi.org/10.2514/1.34896
  78. Lee, D., Kim, H.J. and Sastry, S. (2009), "Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter", Int. J.Control Autom., 7(3), 419-428. https://doi.org/10.1007/s12555-009-0311-8
  79. Leitner, J., Calise, A., Prasad, J.V.R. (1997), "Analysis of adaptive neural networks for helicopter flight control", J. Guid.Control Dynam., 20(5), 972-979. https://doi.org/10.2514/2.4142
  80. Lim, H.S., M Jafri, M.Z., Abdullah, K. (2003), "Evaluation of conventional digital camera scenes for thematic information extraction", Proceedings of the NAP Asia, Kuala, Lumpur, Malaysia, October.
  81. Lin, P.S., Hagen, L., Valavanis, K. and Zhou, H. (2005), "Vision of Unmanned Aerial Vehicle (UAV) Based Traffic Management for Incidents and Emergencies", Proceeding of the 12th World Congress on Intelligent Transport Systems, San Francisco, California, USA, November.
  82. Liu, X.F., Peng, Z.R., Zhang, L.Y. and Li, L. (2012), "Unmanned aerial vehicle route planning for traffic information collection", Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/J. Transport. Syst .Eng. Inform. Technol., 12(1), 91-97.
  83. Liu, X.F., Gao, L.M, Guang, Z.W. and Song, Y.Q. (2013), "A UAV allocation method for traffic surveillance in sparse road network", J. Highway Transport. Res. Development (English Edition), 7(2), 81-87. https://doi.org/10.1061/JHTRCQ.0000319
  84. Liu, X.F., Peng, Z.R., Chang, Y.T. and Zhang, L.Y. (2012), "Multi-objective evolutionary approach for UAV cruise route planning to collect traffic information", J. Central South Univ., 19, 3614-3621. https://doi.org/10.1007/s11771-012-1449-8
  85. Lowe, D.G. (1999), "Object recognition from local scale-invariant features", Proceedings of the 1999 7th IEEE International Conference on Computer Vision (ICCV'99), Kerkyra, Greece, September.
  86. Lucieer, A, Robinson, S. and Turner, D.J. (2011), "Unmanned aerial vehicle (UAV) remote sensing for hyperspatial terrain mapping of Antarctic moss beds based on structure from motion (SfM) point clouds", Proceedings of the 34th International Symposium on Remote Sensing of Environment (ISRSE34), Sydney, Australia, April.
  87. Ma, L.S., Zhou, W.H., Gong, X.J. and Liu, J.L. (2012), "Motion constrained generalized Field D* path planning", Zhejiang Daxue Xuebao (Gongxue Ban)/J. Zhejiang Univ. (Engineering Science), 46(8), 1546-1552.
  88. Max, P. and Andreas, B. (2013), "Simultaneous localization and mapping with multimodal probability distributions", Int. J. Robot. Res., 32(2), 143-171. https://doi.org/10.1177/0278364912461540
  89. Maza, I., Caballero, F., Capitan, J., Martinez-De-Dios, J. R. and Ollero, A. (2011), "Experimental results in multi-UAV coordination for disaster management and civil security applications", J. Intell. Robot. Syst., 61(1-4), 563-585. https://doi.org/10.1007/s10846-010-9497-5
  90. McGlone, C., Mikhail, E. and Bethel, J. (2004), Manual of Photogrammetry, American Society for Photogrammetry and Remote Sensing, Bethesda, MD.
  91. Metni, N. and Hamel, T. (2007), "A UAV for bridge inspection: visual servoing control law with orientation limits", Automat. Constr., 17(1), 3-10. https://doi.org/10.1016/j.autcon.2006.12.010
  92. Metni, N., Pflimlin, J.M., Hamel, T. and Soueres, P. (2006), "Attitude and gyro bias estimation for a VTOL UAV", Control Eng. Pract., 14(12), 1511-1520. https://doi.org/10.1016/j.conengprac.2006.02.015
  93. Mezouar, Y. and Chaumette, F. (2002), "Path planning for robust image-based control", IEEE T. Robot. Autom., 18(4), 534-549. https://doi.org/10.1109/TRA.2002.802218
  94. Mikhail, E.M., Bethel, J.S. and McGlone, J.C. (2001), Introduction to Modern Photogrammetry, John Wiley & Sons Inc, Hoboken, New Jersey, USA.
  95. Min, J., Kim, J., Jung, Y. and Kweon, I.S. (2012), "Visual lock-on to invisible target for unmanned aerial vehicle", Electron. Lett., 48(14), 835-837. https://doi.org/10.1049/el.2012.0996
  96. Mitra, P., Murthy, C.A. and Pal, S.K. (2002), "Unsupervised feature selection using feature similarity", IEEE T. Pattern Anal., 24(3), 301-312. https://doi.org/10.1109/34.990133
  97. Moghadam, P., Wijesoma, W.S. and Feng, D.J. (2008), "Improving path planning and mapping based on stereo vision and lidar", Proceedings of the 2008 10th International Conference on Control, Automation, Robotics and Vision, ICARCV 2008, Melia Hanoi, Vietnam, December.
  98. Moranduzzo, T. and Melgani, F. (2014), "Automatic car counting method for unmanned aerial vehicle images", IEEE T. Geosci. Remote, 52(3), 1635. https://doi.org/10.1109/TGRS.2013.2253108
  99. Morphew, M.E., Shively, J.R. and Casey, D. (2004), "Helmet mounted displays for unmanned aerial vehicle control", Proceedings of the Helmet- and Head-Mounted Displays IX: Technologies and Applications, Orlando, Florida, USA, September.
  100. Murphy, R.R., Steimle, E., Griffin, C., Cullins, C., Hall, M. and Pratt, K. (2008), "Cooperative use of unmanned sea surface and micro aerial vehicles at Hurricane Wilma", J. Field Robot., 25(3), 164-180. https://doi.org/10.1002/rob.20235
  101. Murphy, R.R., Steimle, E., Hall, M., Lindemuth, M., Trejo, D., Hurlebaus, S., Medina-Cetina, Z. and Slocum, D. (2011), "Robot-assisted bridge inspection", J. Intell. Robot. Syst., 64(1), 77-95. https://doi.org/10.1007/s10846-010-9514-8
  102. Murray, R.M. (2007), "Recent research in cooperative control of multivehicle systems", J. Dyn. Syst.- T. ASME, 129(5), 571-583. https://doi.org/10.1115/1.2766721
  103. Nho, K.and Agarwal, R.K. (2000), "Automatic landing system design using fuzzy logic", J. Guid., Control Dynam., 23(2), 298-304. https://doi.org/10.2514/2.4522
  104. Niethammer, U., James, M.R., Rothmund, S., Travelletti, J. and Joswig, M. (2012), "UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results", Geology, 128, 2-11.
  105. Nikolos, I.K., Valavanis, K.P., Tsourveloudis, N.C. and Kostaras, A.N. (2003), "Evolutionary algorithm based offline/online path planner for UAV navigation", Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE T., 33(6), 898-912. https://doi.org/10.1109/TSMCB.2002.804370
  106. Nygard, K.E., Altenburg, K., Tang, J., Schesvold, D., Pikalek, J. and Hennebry, M. (2007), "Alternative control methodologies for patrolling assets with unmanned air vehicles", Lecture Notes in Economics and Mathematical Systems, 588, 105-115. https://doi.org/10.1007/978-3-540-48271-0_7
  107. Olfati-Saber, R. and Murray, R.M. (2004), "Consensus problems in networks of agents with switching topology and time-delays", IEEE T. Automat. Contr., 49(9), 1520-1533. https://doi.org/10.1109/TAC.2004.834113
  108. Padula, F. and Perdereau, V. (2013), "An on-line path planner for industrial manipulators", Int. J. Adv. Robotic Syst., 10, Article number 156.
  109. Papoutsa, C. and Hadjimitsis, D.G. (2013), "Remote Sensing for Water Quality Surveillance in Inland Waters: The Case Study of Asprokremmos Dam in Cyprus", Remote Sensing of Environment - Integrated Approaches, (Ed.), ISBN: 978-953-51-1152-8, InTech, DOI: 10.5772/39308.
  110. Park, S., Deyst, J. and How, J.P. (2007), "Performance and lyapunov stability of a nonlinear path-following guidance method", J. Guid. Control Dynam., 30(6), 1718-1728. https://doi.org/10.2514/1.28957
  111. Peng, K., Cai, G., Chen, B.M., Dong, M., Lum, K.Y. and Lee, T.H. (2009), "Design and implementation of an autonomous flight control law for a UAV helicopter", Automatica, 45(10), 2333-2338. https://doi.org/10.1016/j.automatica.2009.06.016
  112. Peng, Z.R., Liu, X.F., Zhang, L.Y. and Sun, J. (2012), Research progress and prospect of UAV applications in transportation information collection, Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 12(6), 119-126.
  113. Perry, J.H. and Ryan, R.J. (2011), "Small-scale unmanned aerial vehicles in environmental remote sensing: challenges and opportunities", GIScience & Remote Sensing, 48(1), 99-111. https://doi.org/10.2747/1548-1603.48.1.99
  114. Pesonen, U.J., Stect, J.E., Rokhsaz, K., Bruner, H.S. and Duerksen, N. (2004), "Adaptive neural network inverse controller for general aviation safety, Journal of Guidance, Control, and Dynamics, 27(3), 434-443. https://doi.org/10.2514/1.1923
  115. Prandini, M., Hu, J., Lygeros, J. and Sastry, S. (2000), "Aprobabilistic approach to aircraft conflict detection", IEEE Transactions on Intelligent Transportation Systems, 1(4), 199-219. https://doi.org/10.1109/6979.898224
  116. Puri, A. (2005), "A survey of unmanned aerial vehicles (UAV) for traffic surveillance", Department of computer science and engineering, University of South Florida.
  117. Puri, A., Valavanis, K. and Kontitsis, M. (2007), "Generating traffic statistical profiles using unmanned helicopter-based video data", Proceedings of the 2007 IEEE International Conference on Robotics and Automation, ICRA'07, Rome, Italy, April.
  118. Rathinam, S., Almeida, P., Kim, Z., Jackson, S., Tinka, A., Grossman, W. and Sengupta, R. (2007), "Autonomous searching and tracking of a river using an UAV", Proceedings of the 2007 American Control Conference, ACC, New York City, USA, July.
  119. Rahmeyer W. (2010), "Development of flood emergency response capability using UAV's", Utah Center for Water Resources Research, Annual Technical Report FY 2010, 2011.
  120. Rathinam, S., Kim, Z.W. and Sengupta, R. (2008), "Vision-based monitoring of locally linear structures using an unmanned aerial vehicle", Journal of Infrastructure Systems, 14(1), 52-63. https://doi.org/10.1061/(ASCE)1076-0342(2008)14:1(52)
  121. Ren, W. and Beard, R.W. (2004), "Trajectory tracking for unmanned air vehicles with velocity and heading rate constraints", IEEE Transactions on Control Systems Technology, 12(5), 706-716. https://doi.org/10.1109/TCST.2004.826956
  122. Ren, W., Beard, R.W. and Atkins, E.M. (2007), "Information consensus in multivehicle cooperative control", IEEE Control Systems Magazine, 27(2), 71-82. https://doi.org/10.1109/MCS.2007.338264
  123. Richards, J.A. (2013), Remote Sensing Digital Image Analysis: An Introduction, Springer.
  124. Riehl, J.R., Collins, G.E. and Hespanha, J.P. (2011), "Cooperative search by UAV teams: A model predictive approach using dynamic graphs", IEEE Transactions on Aerospace and Electronic Systems, 47(4), 2637-2656. https://doi.org/10.1109/TAES.2011.6034656
  125. Salazar-Cruz, S., Escareno, J., Lara, D. and Lozano, R. (2007), "Embedded control system for a four-rotor UAV", International Journal of Adaptive Control and Signal Processing, 21(2-3), 189-204. https://doi.org/10.1002/acs.940
  126. Samad, T., Bay, J.S., Godbole, D. (2007), "Network-centric systems for military operations in urban terrain: The role of UAVs", Proceedings of the IEEE, 95(1), 92-107. https://doi.org/10.1109/JPROC.2006.887327
  127. Sanchez, G. and Latombe, J.C. (2002), "On delaying collision checking in PRM planning: Application to multi-robot coordination", International Journal of Robotics Research, 21(1), 5-26 https://doi.org/10.1177/027836402320556458
  128. Schenk, T.F. (1999), Digital Photogrammetry: Backgrounds, Fundamentals, Automatic Orientation Procedures. Terrascience Systems Ltd., Vancouver, British.
  129. Shiau, J.K., Ma, D.M., Yang, P.Y., Wang, G.F. and Gong, J.H. (2009), "Design of a solar power management system for an experimental UAV", IEEE Transactions on Aerospace and Electronic Systems, 45(4), 1350. https://doi.org/10.1109/TAES.2009.5310303
  130. Shim, D.H., Chung, H. and Sastry, S.S. (2006), "Conflict-free navigation in unknown urban environments", IEEE Robotics and Automation Magazine, 13(3), 27-33.
  131. Shima, T., Rasmussen, S.J., Sparks, A.G. and Passino, K.M. (2006), "Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms", Computers and Operations Research, 33(11), 3252-3269. https://doi.org/10.1016/j.cor.2005.02.039
  132. Srinivasan, S., Latchman, H., Shea, J., Wong, T. and McNair, J. (2004), "Airborne traffic surveillance systems - Video surveillance of highway traffic", VSSN'04 - Proceedings of the ACM Second International Workshop on Video Surveillance and Sensor Networks, New York, NY, USA, October.
  133. Steissberg, T., Schladow, G. and Hook, S. (2010), "Monitoring past, present, and future water quality using remote sensing", Tahoe environmental research center and jet propulsion laboratory (NASA), Report of Southern Nevada Public Lands Management Act, Lake Tahoe Environmental Improvement Program, December.
  134. Stipanovic, D.M., Inalhan, G., Teo, R. and Tomlin, C.J. (2004), "Decentralized overlapping control of a formation of unmanned aerial vehicles", Automatica, 40(8), 1285-1296. https://doi.org/10.1016/j.automatica.2004.02.017
  135. Stroumtsos, N., Gilbreath, G. and Przybylski, S. (2013), "An intuitive graphical user interface for small UAS", Proceedings of Unmanned Systems Technology XV Conference, Baltimore, Maryland, USA, April.
  136. Sturtevant, N.R. (2012), "Benchmarks for grid-based pathfinding", IEEE Transactions on Computational Intelligence and AI in Games, 4(2), 144-148. https://doi.org/10.1109/TCIAIG.2012.2197681
  137. Tang, Y., Gao, H., Kurths, J. and Fang, J.A. (2012), "Evolutionary pinning control and its application in UAV coordination", IEEE Transactions on, 8(4), 828-838.
  138. Thrun, S. (1998), "Learning metric-topological maps for indoor mobile robot navigation", Artificial Intelligence, 99(1), 21-71. https://doi.org/10.1016/S0004-3702(97)00078-7
  139. Turner, D., Lucieer, A. and Wallace, L. (2013), "Direct Georeferencing of Ultrahigh-Resolution UAV Imagery", IEEE Transactions on Geoscience and Remote Sensing, available online doi: 10.1109/TGRS.2013.2265295.
  140. Turner, D., Lucieer, A. and Watson, C. (2012), "An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds", Remote Sensing, 4(5), 1392-1410. https://doi.org/10.3390/rs4051392
  141. Wagstaff, K., Cardie, C., Rogers, S. and Schrodl, S. (2001), "Constrained k-means clustering with background knowledge", Proceedings of ICML: Williams College, Williamstown, MA, USA, July.
  142. Wallace, L., Lucieer, A., Watson, C. and Turner, D. (2012), "Development of a UAV-LiDAR system with application to forest inventory", Remote Sensing, 4(6), 1519-1543. https://doi.org/10.3390/rs4061519
  143. Wang, X., Yadav, V. and Balakrishnan, S.N. (2007), "Cooperative UAV formation flying with obstacle/collision avoidance", Control Systems Technology, IEEE Transactions on, 15(4), 672-679. https://doi.org/10.1109/TCST.2007.899191
  144. Wang, Y., Xia, H., Fu, J. and Sheng, G. (2004), "Water quality change in reservoirs of Shenzhen, China: detection using LANDSAT/TM data", Science of the Total Environment, 328(1), 195-206. https://doi.org/10.1016/j.scitotenv.2004.02.020
  145. Wee, S.G., Kim, Y.G., Choi, J.W. and Lee, S.G. (2013), "Hybrid path planning of multi-robots for path deviation prevention", Journal of Institute of Control, Robotics and Systems, 19(5), 416-422. https://doi.org/10.5302/J.ICROS.2013.13.9005
  146. Willms, A.R. and Yang, S.X. (2008), "Real-time robot path planning via a distance-propagating dynamic system with obstacle clearance", IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38(3), 884-893. https://doi.org/10.1109/TSMCB.2008.921002
  147. Yokoyama, N. and Suzuki, S. (2005), "Modified genetic algorithm for constrained trajectory optimization", Journal of Guidance, Control, and Dynamics, 28(1), 139-144. https://doi.org/10.2514/1.3042
  148. Zhang, C. and Elaksher, A. (2012), "An unmanned aerial vehicle-based imaging system for 3D measurement of unpaved road surface distresses", Computer-Aided Civil and Infrastructure Engineering, 27(2), 118-129. https://doi.org/10.1111/j.1467-8667.2011.00727.x
  149. Zhang, L.Y., Peng, Z.R., Sun, D. J. and Liu, X. (2013), "A UAV-based automatic traffic incident detection system for low volume roads", Proceedings of Transportation Research Board 92nd Annual Meeting, Washington, D.C., USA, January.
  150. Zhao, X.J., Bi, J., Liu, M.Z. and Chen, L. (2010), "The Study of Soccer Robot Path Planning Based on Grid-Based Potential Field Method Improvements", Advanced Materials Research, 139, 1798-1802.
  151. http://copter.ardupilot.com/

Cited by

  1. Ultra-Wideband-Based Localization for Quadcopter Navigation vol.04, pp.01, 2016, https://doi.org/10.1142/S2301385016400033
  2. The aeroelastic characteristics of high aspect ratio wing vol.230, pp.14, 2016, https://doi.org/10.1177/0954410016629497
  3. UAV-based automatic generation of high-resolution panorama at a construction site with a focus on preprocessing for image stitching vol.84, 2017, https://doi.org/10.1016/j.autcon.2017.08.031
  4. Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works vol.4, pp.1, 2016, https://doi.org/10.1186/s40327-015-0029-z
  5. Development and Evaluation of a UAV-Photogrammetry System for Precise 3D Environmental Modeling vol.15, pp.12, 2015, https://doi.org/10.3390/s151127493
  6. Flying maggots: a smart logistic solution to an enduring medical challenge vol.7, pp.2, 2017, https://doi.org/10.1108/JHLSCM-02-2017-0003
  7. Developing Stereo-vision based Drone for 3D Model Reconstruction of Collapsed Structures in Disaster Sites vol.17, pp.6, 2016, https://doi.org/10.5762/KAIS.2016.17.6.33
  8. Adaptive and robust control of quadrotor aircrafts with input saturation vol.89, pp.1, 2017, https://doi.org/10.1007/s11071-017-3451-z
  9. Evolutionary View Planning for Optimized UAV Terrain Modeling in a Simulated Environment vol.8, pp.12, 2016, https://doi.org/10.3390/rs8010026
  10. Modeling Slope Topography Using Unmanned Aerial Vehicle Image Technique vol.147, 2018, https://doi.org/10.1051/matecconf/201814707002
  11. Application of Low-Cost Fixed-Wing UAV for Inland Lakes Shoreline Investigation 2017, https://doi.org/10.1007/s00024-017-1707-7
  12. Unmanned Aerial Vehicle (UAV)-Based Assessment of Concrete Bridge Deck Delamination Using Thermal and Visible Camera Sensors: A Preliminary Analysis 2017, https://doi.org/10.1080/09349847.2017.1304597
  13. Bridge deck delamination identification from unmanned aerial vehicle infrared imagery vol.72, 2016, https://doi.org/10.1016/j.autcon.2016.08.024
  14. Long-endurance remotely piloted aircraft systems (LE-RPAS) support for humanitarian logistic operations vol.7, pp.1, 2017, https://doi.org/10.1108/JHLSCM-05-2016-0018
  15. Geovisualisation of relief in a virtual reality system on the basis of low-level aerial imagery 2018, https://doi.org/10.1007/s00024-017-1755-z
  16. Determining the limits of unmanned aerial photogrammetry for the evaluation of road runoff vol.85, 2016, https://doi.org/10.1016/j.measurement.2016.02.030
  17. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle vol.98, 2017, https://doi.org/10.1016/j.measurement.2016.12.002
  18. Analyzing the threat of unmanned aerial vehicles (UAV) to nuclear facilities vol.31, pp.1, 2018, https://doi.org/10.1057/s41284-017-0102-5
  19. Rahbin: A quadcopter unmanned aerial vehicle based on a systematic image processing approach toward an automated asphalt pavement inspection vol.72, 2016, https://doi.org/10.1016/j.autcon.2016.09.002
  20. Antenna Diagnostics and Characterization Using Unmanned Aerial Vehicles vol.5, 2017, https://doi.org/10.1109/ACCESS.2017.2754985
  21. Accuracy of Digital Surface Models and Orthophotos Derived from Unmanned Aerial Vehicle Photogrammetry vol.143, pp.2, 2017, https://doi.org/10.1061/(ASCE)SU.1943-5428.0000206
  22. Wireless vision-based fuzzy controllers for moving object tracking using a quadcopter vol.13, pp.4, 2017, https://doi.org/10.1177/1550147717705549
  23. Prototype Design and Experimental Test of a Rotorcraft Capable of Adhering to and Moving on the Ceiling vol.45, 2016, https://doi.org/10.1051/matecconf/20164504004
  24. Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges 2017, https://doi.org/10.1177/1475921717735326
  25. Infrared drones in the construction industry: designing a protocol for building thermography procedures vol.132, 2017, https://doi.org/10.1016/j.egypro.2017.09.636
  26. Potential Applications of UAV along the Construction's Value Chain vol.182, 2017, https://doi.org/10.1016/j.proeng.2017.03.155
  27. A Multidimensional Framework for Unmanned Aerial System Applications in Construction Project Management vol.34, pp.3, 2018, https://doi.org/10.1061/(ASCE)ME.1943-5479.0000597
  28. Unmanned aerial system applications in construction: a systematic review pp.1471-4175, 2018, https://doi.org/10.1108/CI-02-2018-0010
  29. A UAV–RTK Lidar System for Wave and Tide Measurements in Coastal Zones vol.35, pp.8, 2018, https://doi.org/10.1175/JTECH-D-17-0199.1
  30. Applications of multirotor drone technologies in construction management pp.2331-2327, 2018, https://doi.org/10.1080/15623599.2018.1452101
  31. A Novel Method of Autonomous Inspection for Transmission Line based on Cable Inspection Robot LiDAR Data vol.18, pp.2, 2018, https://doi.org/10.3390/s18020596
  32. Evaluation of Calibration Method for Field Application of UAV-Based Soil Water Content Prediction Equation vol.2019, pp.1687-8094, 2019, https://doi.org/10.1155/2019/2486216
  33. Flow Estimation using Drone Optical Imagery with Non-uniform Flow Modeling in a Controlled Experimental Channel pp.1976-3808, 2019, https://doi.org/10.1007/s12205-019-1438-7
  34. Applications of UAVs in Civil Infrastructure vol.25, pp.2, 2019, https://doi.org/10.1061/(ASCE)IS.1943-555X.0000464
  35. Design optimization of a fixed wing aircraft vol.4, pp.1, 2017, https://doi.org/10.12989/aas.2017.4.1.065
  36. Thermal Remote Sensing For Moisture Content Monitoring of Mine Tailings: Laboratory Study vol.23, pp.4, 2014, https://doi.org/10.2113/gseegeosci.23.4.299
  37. SLR 기법에 의한 무인항공기 연구 경향 분석 vol.43, pp.7, 2014, https://doi.org/10.7840/kics.2018.43.7.1107
  38. The Use of Laser Scanning and Unmanned Aerial Vehicles in Construction Surveying in the Light of Legal Regulations in Poland vol.8, pp.2, 2014, https://doi.org/10.2478/jaes-2018-0022
  39. AFET OPERASYONLARI YÖNETİMİNDE İNSANSIZ HAVA ARAÇLARININ KULLANIMI: GÖZETLEME OPERASYONLARI İÇİN ROTA PLANLAMA vol.23, pp.4, 2014, https://doi.org/10.17482/uumfd.455146
  40. Morphing wing with compliant aileron and slat for unmanned aerial vehicles vol.31, pp.3, 2014, https://doi.org/10.1063/1.5086976
  41. LNSNet: Lightweight Navigable Space Segmentation for Autonomous Robots on Construction Sites vol.4, pp.1, 2014, https://doi.org/10.3390/data4010040
  42. Measuring Reference-Free Total Displacements of Piles and Columns Using Low-Cost, Battery-Powered, Efficient Wireless Intelligent Sensors (LEWIS2) vol.19, pp.7, 2014, https://doi.org/10.3390/s19071549
  43. Barriers to adoption of RPAs on construction projects: a task-technology fit perspective vol.19, pp.2, 2019, https://doi.org/10.1108/ci-09-2018-0074
  44. Algorithms and experiments on routing of unmanned aerial vehicles with mobile recharging stations vol.36, pp.3, 2014, https://doi.org/10.1002/rob.21856
  45. On the form of the Musmeci’s bridge over the Basento river vol.191, pp.None, 2014, https://doi.org/10.1016/j.engstruct.2019.04.069
  46. Assessment of GCP Number and Separation Distance for Small UAS Surveys with and without GNSS-PPK Positioning vol.145, pp.3, 2019, https://doi.org/10.1061/(asce)su.1943-5428.0000283
  47. UAV Photogrammetry-Based 3D Road Distress Detection vol.8, pp.9, 2014, https://doi.org/10.3390/ijgi8090409
  48. Use of gaming technology to bring bridge inspection to the office vol.15, pp.10, 2014, https://doi.org/10.1080/15732479.2019.1615962
  49. Scientometric analysis of research on “remotely piloted aircraft” : A research agenda for the construction industry vol.27, pp.3, 2014, https://doi.org/10.1108/ecam-02-2019-0103
  50. BrIM and UAS for bridge inspections and management vol.27, pp.3, 2014, https://doi.org/10.1108/ecam-12-2018-0556
  51. Robust Hybrid Control Algorithm for Tuning the Altitude and Attitude of Unmanned Aerial Vehicle vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/2368273
  52. Quantifying Flood Water Levels Using Image-Based Volunteered Geographic Information vol.12, pp.4, 2020, https://doi.org/10.3390/rs12040706
  53. A Survey of Path Following Control Strategies for UAVs Focused on Quadrotors vol.98, pp.2, 2014, https://doi.org/10.1007/s10846-019-01085-z
  54. UAV Integration in Current Construction Safety Planning and Monitoring Processes: Case Study of a High-Rise Building Construction Project in Chile vol.36, pp.3, 2014, https://doi.org/10.1061/(asce)me.1943-5479.0000761
  55. Influence of Image TIFF Format and JPEG Compression Level in the Accuracy of the 3D Model and Quality of the Orthophoto in UAV Photogrammetry vol.6, pp.5, 2014, https://doi.org/10.3390/jimaging6050030
  56. Vision-based full-field panorama generation by UAV using GPS data and feature points filtering vol.25, pp.5, 2014, https://doi.org/10.12989/sss.2020.25.5.631
  57. Analysis of Optimal Flight Parameters of Unmanned Aerial Vehicles (UAVs) for Detecting Potholes in Pavements vol.10, pp.12, 2014, https://doi.org/10.3390/app10124157
  58. Use of UAV-Photogrammetry for Quasi-Vertical Wall Surveying vol.12, pp.14, 2014, https://doi.org/10.3390/rs12142221
  59. Applications of Unmanned Aerial Vehicles in Mining from Exploration to Reclamation: A Review vol.10, pp.8, 2014, https://doi.org/10.3390/min10080663
  60. UAV-Based Terrain Modeling under Vegetation in the Chinese Loess Plateau: A Deep Learning and Terrain Correction Ensemble Framework vol.12, pp.20, 2014, https://doi.org/10.3390/rs12203318
  61. A photogrammetric method for laboratory-scale investigation on 3D landslide dam topography vol.79, pp.9, 2020, https://doi.org/10.1007/s10064-020-01870-3
  62. Exploratory study of user-perceived effectiveness of unmanned aircraft system (UAS) integration in visual inspections of transportation agency vol.5, pp.3, 2020, https://doi.org/10.1007/s41062-020-00355-2
  63. Quantitative Assessment of Proximity Risks Associated with Unmanned Aerial Vehicles in Construction vol.37, pp.1, 2014, https://doi.org/10.1061/(asce)me.1943-5479.0000852
  64. Systematic Tertiary Study for Consolidating further Implications of Unmanned Aircraft System Applications vol.37, pp.2, 2014, https://doi.org/10.1061/(asce)me.1943-5479.0000880
  65. Automation of Inspection Mission Planning Using 4D BIMs and in Support of Unmanned Aerial Vehicle-Based Data Collection vol.147, pp.3, 2014, https://doi.org/10.1061/(asce)co.1943-7862.0001995
  66. A review on applications of rotary-wing unmanned aerial vehicle charging stations vol.18, pp.3, 2014, https://doi.org/10.1177/17298814211015863
  67. Unmanned Aerial Vehicles (UAVs) for Physical Progress Monitoring of Construction vol.21, pp.12, 2014, https://doi.org/10.3390/s21124227
  68. Aerial robotic technologies for civil engineering: established and emerging practice vol.9, pp.2, 2014, https://doi.org/10.1139/juvs-2020-0019
  69. Debonding defect quantification method of building decoration layers via UAV-thermography and deep learning vol.28, pp.1, 2021, https://doi.org/10.12989/sss.2021.28.1.055
  70. Robust attitude control of a 3-DOF helicopter prototype subject to wind disturbance and communication delay vol.43, pp.13, 2014, https://doi.org/10.1177/01423312211021294
  71. Human-Robot Collaboration in Construction: Classification and Research Trends vol.147, pp.10, 2014, https://doi.org/10.1061/(asce)co.1943-7862.0002154
  72. Monitoring the Work Cycles of Earthmoving Excavators in Earthmoving Projects Using UAV Remote Sensing vol.13, pp.19, 2014, https://doi.org/10.3390/rs13193853
  73. A survey of safe landing zone detection techniques for autonomous unmanned aerial vehicles (UAVs) vol.179, pp.None, 2021, https://doi.org/10.1016/j.eswa.2021.115091
  74. Non-contact structural displacement measurement using Unmanned Aerial Vehicles and video-based systems vol.160, pp.None, 2014, https://doi.org/10.1016/j.ymssp.2021.107869
  75. Unmanned Aerial Vehicles in Hydrology and Water Management: Applications, Challenges, and Perspectives vol.57, pp.11, 2014, https://doi.org/10.1029/2021wr029925
  76. Revealing Safety Risks of Unmanned Aerial Vehicles in Construction vol.2675, pp.11, 2014, https://doi.org/10.1177/03611981211017134
  77. A Critical Review of Unmanned Aerial Vehicles (UAVs) Use in Architecture and Urbanism: Scientometric and Bibliometric Analysis vol.11, pp.21, 2021, https://doi.org/10.3390/app11219966
  78. Novel Solutions to the Three-Anchor ToA-Based Three-Dimensional Positioning Problem vol.21, pp.21, 2014, https://doi.org/10.3390/s21217325
  79. An Extended Methodology for Sizing Solar Unmanned Aerial Vehicles: Theory and Development of a Python Framework for Design Assist vol.21, pp.22, 2021, https://doi.org/10.3390/s21227541
  80. Safety challenges of UAV integration in construction: Conceptual analysis and future research roadmap vol.144, pp.None, 2014, https://doi.org/10.1016/j.ssci.2021.105473
  81. Drone-Based Non-Destructive Inspection of Industrial Sites: A Review and Case Studies vol.5, pp.4, 2014, https://doi.org/10.3390/drones5040106
  82. Critical review of data-driven decision-making in bridge operation and maintenance vol.18, pp.1, 2014, https://doi.org/10.1080/15732479.2020.1833946