DOI QR코드

DOI QR Code

Estimation of Atmospheric Turbulent Fluxes by the Bulk Transfer Method over Various Surface

다양한 지표면 위에서 총체 전달 방법에 의한 대기 난류 플럭스 추정

  • Kim, Min-Seong (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kwon, Byung-Hyuk (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Kang, Dong-Hwan (Geo-Sciences Institute, Pukyong National University)
  • 김민성 (부경대학교 환경대기과학과) ;
  • 권병혁 (부경대학교 환경대기과학과) ;
  • 강동환 (부경대학교 지구과학연구소)
  • Received : 2014.04.22
  • Accepted : 2014.06.10
  • Published : 2014.06.30

Abstract

The momentum flux and the sensible heat flux were measured with the scintillometers and ultrasonic anemometers at 6 sites of which surface characteristics like roughness length and zero-displacement are different each other. We estimated the momentum flux and the sensible heat flux based on the bulk transfer method with the drag coefficient and the heat transfer coefficient calculated from the temperature and wind speed at two heights. The variation of bulk transfer coefficients showed a remarkable difference depending on the atmospheric stability which is less influenced by the zero-displacement than the roughness length. The estimated sensible heat fluxes were in good agreement with those measured at 3 m, showing 23.7 $Wm^{-2}$ of the root mean square error that is less than 10% of its maximum. Since the estimated momentum flux is not only effected by drag coefficient but also by wind speed square, the determination of wind speed in the bulk transfer method is critical.

Keywords

References

  1. Anandakumar, K., 1999, Sensible heat flux over a wheat canopy: optical scintillometer measurements and surface renewal analysis estimations, Agric. For. Meteorol., 96, 145-156. https://doi.org/10.1016/S0168-1923(99)00026-X
  2. Andre, J. C., DeMoor, P. L., Therry, G., 1978, Modeling the 24-hour evolution of the mean and turbulent structures of the planetary boundary layer, J. Atmos. Sci., 35, 1861-1883. https://doi.org/10.1175/1520-0469(1978)035<1861:MTHEOT>2.0.CO;2
  3. Arya, S. P., 1998, Introduction to Micrometeorology, 2nd ed., Academic Press, San Diego, pp. 433.
  4. Beljaars, A. C. M., Schotanus, P., Nieuwstadt, F. T. M., 1983, Surface layer similarity under nonuniform fetch conditions, J. Clim. Appl. Meteorol., 22, 1800-1810. https://doi.org/10.1175/1520-0450(1983)022<1800:SLSUNF>2.0.CO;2
  5. Burns, S. P., Horst, T. W., Jacobsen, L., Blanken, P. D., Monson, R. K., 2012, Using sonic anemometer temperature to measure sensible heat flux in strong winds, Atmos. Meas. Tech., 5, 2095-2011. https://doi.org/10.5194/amt-5-2095-2012
  6. Carson, D. J., 1973, The development of a dry inversion-capped convectively unstable boundary layer, Quart. J. Roy. Meteorol. Soc., 99, 450-467. https://doi.org/10.1002/qj.49709942105
  7. Caughey, S. J., Wyngaard, J. C., Kaimal, J. C., Turbulence in the evolving stable boundary layer, J. Atmos. Sci., 36, 1041-1052.
  8. De Bruin, H. A. R., Van den hurk, B. J. J. M., Kohsiek, W., 1995, The scintillation method tested over a dry vine yard area, Boundary layer Meteorology, 76, 25-40. https://doi.org/10.1007/BF00710889
  9. De Bruin, H. A. R., 2002, Introduction: Renaissance of Scintillometry, Boundary layer Meteorology, 105, 1-4. https://doi.org/10.1023/A:1019628124829
  10. Dong, Z., Gao, S., Donald, W. F., 2001, Drag coefficients, roughness length and zero-plane displacement height as distributed by artificial standing vegetation, Journal of Arid Environments, 49(3), 485-505. https://doi.org/10.1006/jare.2001.0807
  11. Gao, Z., Wang, J., Ma, Y., Kim, J., Choi, T. J., Lee, H. C., Asanuma, J., Hu, Z., 2000, Study of roughness lengths and drag coefficients over Nansha area region, Gobi, desert, Oasis and Tibetan plateau, Phys. Chem. Earth (B), 25(2), 141-145.
  12. Garratt, J. R., 1977, Review of drag coefficients over oceans and continents, Monthly Weather Review, 105, 915-929. https://doi.org/10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2
  13. Greenhut, G. K., 1982, Stability dependence of fluxes and bulk transfer coefficients in a tropical boundary layer, Boundary layer Meteorology, 24, 253-264. https://doi.org/10.1007/BF00121670
  14. Jia, L., Su, Z., Van den Hurk, B., Menenti, M., Moene, A., De Bruin, H. A. R., Risarry, J. J. B., Ibanez, M., Cuesta, A., 2003, Estimation of sensible heat flux using the surface energy balance system and ASTR measurement, Physics and Chemistry of the earth, 28, 75-88. https://doi.org/10.1016/S1474-7065(03)00009-3
  15. Kanda, M., Moriwaki, R., Roth, M., and Oke, T., 2002, Area-Averaged Sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometry, Boundary layer meteorology, 105, 177-193. https://doi.org/10.1023/A:1019668424982
  16. Kondo, J., 1975, Air-sea bulk transfer coefficients in diabatic conditions, Boundary layer meteorology, 9, 91-112. https://doi.org/10.1007/BF00232256
  17. Kondo, J., and Kawanaka, A., 1986, Numerical study on the bulk heat transfer coefficient for a variety of vegetation types and densitys, Boundary layer meteorology, 37, 285-296. https://doi.org/10.1007/BF00122990
  18. Kwon, B. H., Benech, B., Lambert, D., Durand, P., Druilhet, A., Giordani, H., Planton, S., 1998, Structure of the marine atmospheric boundary layer over an oceanic thermal front. SEMAPHORE experiment, J. Geophys. Res., 103, Issue C11, p.25159-25180. https://doi.org/10.1029/98JC02207
  19. Launiainen, J., and Vihma, T., 1990, Derivation of turbulent surface fluxes - An iterative flux-profile method allowing arbitrary observing heights, Environmental Software, 5(3), 113-124. https://doi.org/10.1016/0266-9838(90)90021-W
  20. Li, G., Duan, T., Gong, Y., 2000, Bulk transfer coefficient and surface flux on the west of Tibetan plateau, Chinese Science Bulletin, 45, 1221. https://doi.org/10.1007/BF02886084
  21. Mason, P. J., and Thompson, D. J., 1987, Large eddy simulations of the neutral-static-stability planetary boundary layer, Quart. J. Roy. Meteor. Soc., 25, 271-287.
  22. Nieveen, J. P., and Green, A. E., 1999, Measuring sensible heat flux density over pasture using the CT2-profile method, Boundary layer meteorology, 91, 23-25. https://doi.org/10.1023/A:1001730530267
  23. Park, S. J., Choi, T. J., Kim, S. J., 2013, Heat flux variations over sea ice observed at the coastal area of the sejong station, Antarctica, Asia-pacific J. Atmos. Sci., 49(4), 443-450. https://doi.org/10.1007/s13143-013-0040-z
  24. Patil, M. N., 2006, Aerodynamic drag coefficient and roughness length for three seasons over a tropical western indian station, Atmospheric Research, 80, 280-293. https://doi.org/10.1016/j.atmosres.2005.10.005
  25. Royal Aeronautical Society, 1972, Characteristics of wind speed in the lower layers of the atmosphere near the ground: Strong winds (neutral atmosphere). Engineering Science Data Unit. No. 72026, London.
  26. Stanhill, G., 1969, A simple instrument for field measurement of turbulent diffusion flux, Journal of Applied Meteorology, 8(4), 509-513.
  27. Stull, R. B., 1988, An introduction to boundary layer meteorology, Kluwer Academic Publishers, Dordrecht, pp. 666.
  28. Tennekes, H., 1973, A model for the dynamics of the inversion above a convective boundary layer, J. Atmospheric Science, 30, 558-567. https://doi.org/10.1175/1520-0469(1973)030<0558:AMFTDO>2.0.CO;2
  29. Verkaik, J. W., 2000, Evaluation of two gustiness models for exposure correction calculations, J. Appl. Meteorol., 39, 1613-1626. https://doi.org/10.1175/1520-0450(2000)039<1613:EOTGMF>2.0.CO;2
  30. Verkaik, J. W., and Holtslag, A. A. M., 2007, Wind profiles, momentum fluxes and roughness lengths at Cabauw revisited, Boundary layer Meteor., 122, 701-719. https://doi.org/10.1007/s10546-006-9121-1
  31. Vickers, D., and Mahrt, L., 1997, Quality control and flux sampling problems for tower and aircraft data, J. Atmos. Ocean. Tech., 14, 512-526. https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2
  32. Weiss, A. I., Hennes, M. and Rotach, M. W., 2001, Derivation of refractive index and temperature gradients from optical scintillometry to correct atmospherically induced errors for highly precise geodetic measurements, Surveys in Geophysics, 22, 589-596. https://doi.org/10.1023/A:1015644923182
  33. Wieringa, J., 1976, An objective exposure correction method for average wind speeds measured at a sheltered location, Quart. J. Roy. Meteor. Soc., 102, 241-253. https://doi.org/10.1002/qj.49710243119
  34. Zhang, H. S., and Park, S. U., 1998, Bulk transfer coefficients over different surfaces, J. of Korean Meteor. Soc., 34(4), 664-669.
  35. Zhao, P., Chen, L., 2000, The climate characteristics of surface turbulent exchange and surface heat source over the Qinghai-Tibet plateau, Acta Meteorological Sinica., 14, 13-29.

Cited by

  1. Local Wind Field Simulation over Coastal Areas Using Windprofiler Data vol.22, pp.2, 2016, https://doi.org/10.7837/kosomes.2016.22.2.195