DOI QR코드

DOI QR Code

Water and oxygen permeation through transparent ethylene vinyl alcohol/(graphene oxide) membranes

  • Received : 2013.11.04
  • Accepted : 2013.12.09
  • Published : 2014.01.31

Abstract

We prepared ethylene vinyl alcohol (EVOH)/graphene oxide (GO) membranes by solution casting method. X-ray diffraction analysis showed that GOs were fully exfoliated in the EVOH/GO membrane. The glass transition temperatures of EVOH were increased by adding GOs into EVOH. The melting temperatures of EVOH/GO composites were decreased by adding GOs into EVOH, indicating that GOs may inhibit the crystallization of EVOH during non-isothermal crystallization. However, the equilibrium melting temperatures of EVOH were not changed by adding GOs into EVOH. The oxygen permeability of the EVOH/GO (0.3 wt%) film was reduced to 63% of that of pure EVOH film, with 84% light transmittance at 550 nm. The EVOH/GO membranes exhibited 100 times better (water vapor)/(oxygen) selectivity performance than pure EVOH membrane.

Keywords

References

  1. Mokwena KK, Tang J. Ethylene vinyl alcohol: a review of barrier properties for packaging shelf stable foods. Crit Rev Food Sci Nutr, 52, 640 (2011). http://dx.doi.org/10.1080/10408398.2010.504903.
  2. Lopez-Rubio A, Lagaron JM, Hernandez-Munoz P, Almenar E, Catala R, Gavara R, Pascall MA. Effect of high pressure treatments on the properties of EVOH-based food packaging materials. Innov Food Sci Emerg Technol, 6, 51 (2005). http://dx.doi.org/10.1016/j.ifset.2004.09.002.
  3. Mokwena KK, Tang J, Laborie MP. Water absorption and oxygen barrier characteristics of ethylene vinyl alcohol films. J Food Eng, 105, 436 (2011). http://dx.doi.org/10.1016/j.jfoodeng.2011.02.040.
  4. Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 335, 442 (2012). http://dx.doi.org/10.1126/science.1211694.
  5. Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL. Impermeable atomic membranes from graphene sheets. Nano Lett, 8, 2458 (2008). http://dx.doi.org/10.1021/nl801457b.
  6. Leenaerts O, Partoens B, Peeters FM. Graphene: a perfect nanoballoon. Appl Phys Lett, 93, 193107 (2008). http://dx.doi.org/10.1063/1.3021413.
  7. Shin D, Bae SK, Yan C, Kang JM, Ryu JC, Ahn JH, Hong BH. Synthesis and applications of graphene electrodes. Carbon Lett, 13, 1 (2012). http://dx.doi.org/10.5714/CL.2012.13.1.001.
  8. Hummers WS, Jr., Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017.
  9. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater, 11, 771 (1999). http://dx.doi.org/10.1021/cm981085u.
  10. Kim HM, Lee JK, Lee HS. Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites. Thin Solid Films, 519, 7766 (2011). http://dx.doi.org/10.1016/j.tsf.2011.06.016.
  11. Yang YH, Bolling L, Priolo MA, Grunlan JC. Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv Mater, 25, 503 (2013). http://dx.doi.org/10.1002/adma.201202951.
  12. Kim H, Miura Y, Macosko CW. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater, 22, 3441 (2010). http://dx.doi.org/10.1021/cm100477v.
  13. Kim H, Macosko CW. Processing-property relationships of polycarbonate/graphene composites. Polymer, 50, 3797 (2009). http://dx.doi.org/10.1016/j.polymer.2009.05.038.
  14. Shim SH, Kim KT, Lee JU, Jo WH. Facile method to functionalize graphene oxide and its application to poly(ethylene terephthalate)/graphene composite. ACS Appl Mater Interfaces, 4, 4184 (2012). http://dx.doi.org/10.1021/am300906z.
  15. Welty JR, Wicks CE, Wilson RE. Fundamentals of Momentum, Heat, and Mass Transfer. 3rd ed., Wiley, New York, NY (1984).
  16. Polyakova A, Stepanov EV, Sekelik D, Schiraldi DA, Hiltner A, Baer E. Effect of crystallization on oxygen-barrier properties of copolyesters based on ethylene terephthalate. J Polym Sci B, 39, 1911 (2001). http://dx.doi.org/10.1002/polb.1165.
  17. Wu Y, Peng X, Liu J, Kong Q, Shi B, Tong M. Study on the integrated membrane processes of dehumidification of compressed air and vapor permeation processes. J Membr Sci, 196, 179 (2002). http://dx.doi.org/10.1016/S0376-7388(01)00564-6.
  18. Tabe-Mohammadi A. A review of the applications of membrane separation technology in natural gas treatment. Sep Sci Technol, 34, 2095 (1999). http://dx.doi.org/10.1081/SS-100100758.
  19. Liu L, Chen Y, Kang Y, Deng M. An industrial scale dehydration process for natural gas involving membranes. Chem Eng Technol, 24, 1045 (2001). http://dx.doi.org/10.1002/1521-4125(200110)24:10<1045::AID-CEAT1045>3.0.CO;2-T.
  20. Gebben B. A water vapor-permeable membrane from block copolymers of poly(butylene terephthalate) and polyethylene oxide. J Membr Sci, 113, 323 (1996). http://dx.doi.org/10.1016/0376-7388(95)00133-6.
  21. George SC, Thomas S. Transport phenomena through polymeric systems. Prog Polym Sci, 26, 985 (2001). http://dx.doi.org/10.1016/S0079-6700(00)00036-8.
  22. El-Dessouky HT, Ettouney HM, Bouhamra W. A novel air conditioning system: membrane air drying and evaporative cooling. Chem Eng Res Des, 78, 999 (2000). http://dx.doi.org/10.1205/026387600528111.
  23. Scovazzo P, Burgos J, Hoehn A, Todd P. Hydrophilic membranebased humidity control. J Membr Sci, 149, 69 (1998). http://dx.doi.org/10.1016/S0376-7388(98)00176-8.
  24. Zhang Z, Mo Z, Zhang H, Wang X, Zhao X. Crystallization and melting behaviors of PPC-BS/PVA blends. Macromol Chem Phys, 204, 1557 (2003). http://dx.doi.org/10.1002/macp.200350012.
  25. Nagara Y, Nakano T, Okamoto Y, Gotoh Y, Nagura M. Properties of highly syndiotactic poly(vinyl alcohol). Polymer, 42, 9679 (2001). http://dx.doi.org/10.1016/S0032-3861(01)00493-1.
  26. Hoffman JD, Weeks JJ. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Inst Bur Stand A, 66, 13 (1962).
  27. Lee HS. Size of a crystal nucleus in the isothermal crystallization of supercooled liquid. J Chem Phys, 139, 104909 (2013). http://dx.doi.org/10.1063/1.4820560.
  28. Rogers WA, Buritz RS, Alpert D. Diffusion coefficient, solubility, and permeability for helium in glass. J Appl Phys, 25, 868 (1954). http://dx.doi.org/10.1063/1.1721760.
  29. Ogasawara T, Ishida Y, Ishikawa T, Aoki T, Ogura T. Helium gas permeability of montmorillonite/epoxy nanocomposites. Composites A, 37, 2236 (2006). http://dx.doi.org/10.1016/j.compositesa.2006.02.015.
  30. Lape NK, Nuxoll EE, Cussler EL. Polydisperse flakes in barrier films. J Membr Sci, 236, 29 (2004). http://dx.doi.org/10.1016/j.memsci.2003.12.026.

Cited by

  1. Synergetic association of grafted PLA and functionalized graphene on the properties of the designed nanocomposites vol.74, pp.4, 2017, https://doi.org/10.1007/s00289-016-1759-3
  2. Recent updates on the barrier properties of ethylene vinyl alcohol copolymer (EVOH): A review pp.1558-3716, 2017, https://doi.org/10.1080/15583724.2017.1394323