Browse > Article
http://dx.doi.org/10.5714/CL.2014.15.1.050

Water and oxygen permeation through transparent ethylene vinyl alcohol/(graphene oxide) membranes  

Kim, Hye Min (Sangbo Co., LTD.)
Lee, Heon Sang (Department of Chemical Engineering, Dong-A University)
Publication Information
Carbon letters / v.15, no.1, 2014 , pp. 50-56 More about this Journal
Abstract
We prepared ethylene vinyl alcohol (EVOH)/graphene oxide (GO) membranes by solution casting method. X-ray diffraction analysis showed that GOs were fully exfoliated in the EVOH/GO membrane. The glass transition temperatures of EVOH were increased by adding GOs into EVOH. The melting temperatures of EVOH/GO composites were decreased by adding GOs into EVOH, indicating that GOs may inhibit the crystallization of EVOH during non-isothermal crystallization. However, the equilibrium melting temperatures of EVOH were not changed by adding GOs into EVOH. The oxygen permeability of the EVOH/GO (0.3 wt%) film was reduced to 63% of that of pure EVOH film, with 84% light transmittance at 550 nm. The EVOH/GO membranes exhibited 100 times better (water vapor)/(oxygen) selectivity performance than pure EVOH membrane.
Keywords
graphene oxide; ethylene vinyl alcohol; permeability; selectivity; water vapor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 El-Dessouky HT, Ettouney HM, Bouhamra W. A novel air conditioning system: membrane air drying and evaporative cooling. Chem Eng Res Des, 78, 999 (2000). http://dx.doi.org/10.1205/026387600528111.   DOI   ScienceOn
2 Ogasawara T, Ishida Y, Ishikawa T, Aoki T, Ogura T. Helium gas permeability of montmorillonite/epoxy nanocomposites. Composites A, 37, 2236 (2006). http://dx.doi.org/10.1016/j.compositesa.2006.02.015.   DOI   ScienceOn
3 Lape NK, Nuxoll EE, Cussler EL. Polydisperse flakes in barrier films. J Membr Sci, 236, 29 (2004). http://dx.doi.org/10.1016/j.memsci.2003.12.026.   DOI   ScienceOn
4 Liu L, Chen Y, Kang Y, Deng M. An industrial scale dehydration process for natural gas involving membranes. Chem Eng Technol, 24, 1045 (2001). http://dx.doi.org/10.1002/1521-4125(200110)24:10<1045::AID-CEAT1045>3.0.CO;2-T.   DOI
5 Gebben B. A water vapor-permeable membrane from block copolymers of poly(butylene terephthalate) and polyethylene oxide. J Membr Sci, 113, 323 (1996). http://dx.doi.org/10.1016/0376-7388(95)00133-6.   DOI   ScienceOn
6 George SC, Thomas S. Transport phenomena through polymeric systems. Prog Polym Sci, 26, 985 (2001). http://dx.doi.org/10.1016/S0079-6700(00)00036-8.   DOI   ScienceOn
7 Scovazzo P, Burgos J, Hoehn A, Todd P. Hydrophilic membranebased humidity control. J Membr Sci, 149, 69 (1998). http://dx.doi.org/10.1016/S0376-7388(98)00176-8.   DOI   ScienceOn
8 Zhang Z, Mo Z, Zhang H, Wang X, Zhao X. Crystallization and melting behaviors of PPC-BS/PVA blends. Macromol Chem Phys, 204, 1557 (2003). http://dx.doi.org/10.1002/macp.200350012.   DOI   ScienceOn
9 Nagara Y, Nakano T, Okamoto Y, Gotoh Y, Nagura M. Properties of highly syndiotactic poly(vinyl alcohol). Polymer, 42, 9679 (2001). http://dx.doi.org/10.1016/S0032-3861(01)00493-1.   DOI   ScienceOn
10 Hoffman JD, Weeks JJ. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. J Res Natl Inst Bur Stand A, 66, 13 (1962).
11 Lee HS. Size of a crystal nucleus in the isothermal crystallization of supercooled liquid. J Chem Phys, 139, 104909 (2013). http://dx.doi.org/10.1063/1.4820560.   DOI
12 Rogers WA, Buritz RS, Alpert D. Diffusion coefficient, solubility, and permeability for helium in glass. J Appl Phys, 25, 868 (1954). http://dx.doi.org/10.1063/1.1721760.   DOI
13 Kim H, Macosko CW. Processing-property relationships of polycarbonate/graphene composites. Polymer, 50, 3797 (2009). http://dx.doi.org/10.1016/j.polymer.2009.05.038.   DOI   ScienceOn
14 Kim HM, Lee JK, Lee HS. Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites. Thin Solid Films, 519, 7766 (2011). http://dx.doi.org/10.1016/j.tsf.2011.06.016.   DOI   ScienceOn
15 Yang YH, Bolling L, Priolo MA, Grunlan JC. Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv Mater, 25, 503 (2013). http://dx.doi.org/10.1002/adma.201202951.   DOI   ScienceOn
16 Polyakova A, Stepanov EV, Sekelik D, Schiraldi DA, Hiltner A, Baer E. Effect of crystallization on oxygen-barrier properties of copolyesters based on ethylene terephthalate. J Polym Sci B, 39, 1911 (2001). http://dx.doi.org/10.1002/polb.1165.   DOI   ScienceOn
17 Kim H, Miura Y, Macosko CW. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater, 22, 3441 (2010). http://dx.doi.org/10.1021/cm100477v.   DOI   ScienceOn
18 Shim SH, Kim KT, Lee JU, Jo WH. Facile method to functionalize graphene oxide and its application to poly(ethylene terephthalate)/graphene composite. ACS Appl Mater Interfaces, 4, 4184 (2012). http://dx.doi.org/10.1021/am300906z.   DOI   ScienceOn
19 Welty JR, Wicks CE, Wilson RE. Fundamentals of Momentum, Heat, and Mass Transfer. 3rd ed., Wiley, New York, NY (1984).
20 Wu Y, Peng X, Liu J, Kong Q, Shi B, Tong M. Study on the integrated membrane processes of dehumidification of compressed air and vapor permeation processes. J Membr Sci, 196, 179 (2002). http://dx.doi.org/10.1016/S0376-7388(01)00564-6.   DOI   ScienceOn
21 Tabe-Mohammadi A. A review of the applications of membrane separation technology in natural gas treatment. Sep Sci Technol, 34, 2095 (1999). http://dx.doi.org/10.1081/SS-100100758.   DOI   ScienceOn
22 Nair RR, Wu HA, Jayaram PN, Grigorieva IV, Geim AK. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 335, 442 (2012). http://dx.doi.org/10.1126/science.1211694.   DOI   ScienceOn
23 Mokwena KK, Tang J. Ethylene vinyl alcohol: a review of barrier properties for packaging shelf stable foods. Crit Rev Food Sci Nutr, 52, 640 (2011). http://dx.doi.org/10.1080/10408398.2010.504903.   DOI   ScienceOn
24 Leenaerts O, Partoens B, Peeters FM. Graphene: a perfect nanoballoon. Appl Phys Lett, 93, 193107 (2008). http://dx.doi.org/10.1063/1.3021413.   DOI   ScienceOn
25 Lopez-Rubio A, Lagaron JM, Hernandez-Munoz P, Almenar E, Catala R, Gavara R, Pascall MA. Effect of high pressure treatments on the properties of EVOH-based food packaging materials. Innov Food Sci Emerg Technol, 6, 51 (2005). http://dx.doi.org/10.1016/j.ifset.2004.09.002.   DOI   ScienceOn
26 Mokwena KK, Tang J, Laborie MP. Water absorption and oxygen barrier characteristics of ethylene vinyl alcohol films. J Food Eng, 105, 436 (2011). http://dx.doi.org/10.1016/j.jfoodeng.2011.02.040.   DOI   ScienceOn
27 Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL. Impermeable atomic membranes from graphene sheets. Nano Lett, 8, 2458 (2008). http://dx.doi.org/10.1021/nl801457b.   DOI   ScienceOn
28 Shin D, Bae SK, Yan C, Kang JM, Ryu JC, Ahn JH, Hong BH. Synthesis and applications of graphene electrodes. Carbon Lett, 13, 1 (2012). http://dx.doi.org/10.5714/CL.2012.13.1.001.   DOI   ScienceOn
29 Hummers WS, Jr., Offeman RE. Preparation of graphitic oxide. J Am Chem Soc, 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017.   DOI
30 Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater, 11, 771 (1999). http://dx.doi.org/10.1021/cm981085u.   DOI   ScienceOn