References
- Beyer, K. Goldstein, J. Ramakrishnan R. & Shaft, U., 1999. When is "nearest neighbor" meaningful?. ICDT '99 International conference on Database Theory, Israel, 10-12 January 1999, pp.246-251.
- Devroye, L. & Toussaint, G.T., 1981. A Note on Linear Expected Time Algorithm for Finding Convex Hulls. Computing, 26, pp.361-366. https://doi.org/10.1007/BF02237955
- Galton, A. & Duckham, M., 2006. What is the region occupied by a set of points?. Proceedings of the 4th International Conference on Geographic Information Science, Munster, Germany, 20-23 September 2006, pp.81-98.
- Moreira, A. & Santos, M.Y., 2007. Concave hull: A k-nearest neighbors approach for the computation of the region occupied by a set of points. In Proceedings of International Conference on Computer Graphics Theory and Applications, Barcelona, Spain, 8-11 March 2007, pp.61-68.
- HOOPS Exchange, 2014. User Manual. [Online] Available at: http://www.techsoft3d.com/developers/getting-started [Accessed 1 January 2014].
- Hur, C.S., 2012. A study on the digital manufacturing system for assembly process on work-plates in shipbuilding. Thesis of Bachelor. Institute of e-Vehicle Technology, University of Ulsan.
- Jo, D.Y. Cha, J.H. Noh, M.I. Choi, H.S. & Hwang, H.J., 2011. A Study on the block arrangement using 3D ship model and assembly tree. Joint Conference on Marine Science Technology, Republic of Korea, 24-27 May 2011, pp.144-147
- Lee, K.J. Lee, J.K. & Choi, S.Y., 1996. A Spatial Scheduling System and Its Application to Shipbuilding: DASCURVE. Expert System With Application, 10(3), pp.311-324. https://doi.org/10.1016/0957-4174(96)00010-3
- Lozano-Perez, T., 1983. Spartial Planning: A Configuration Space Approach. IEEE Transaction on Computers, 32(2), pp.108-120.
- Luebke, D. Reddy, M. Coheen J.D. Varshney, A. Watson, B. & Huebner, R., 2003. Level of detail for 3D graphics. Elsevier: San Francisco.
- Koh, S.K. Park, J.C. Choi, Y.S. & Ju, C.M., 1999. System for Shipbuilding Company. IE Inferface, 12(4), pp.586-594.
- Koh, S.K. Park, J.C. Ju, C.M. Park, S.H. Lee Y.S. & Jung, D.H., 1998. A case study of the curved block Arrangement on assembly shops for the schedule plan system. Session C01.1, '98 KORMS/KIIE Spring Joint Conference, KyungSeung University Pusan, 24-25 April 1998, pp.81-98.
- O'Rourke, j. Chien, C-B. Olson, T. & Naddor, D., 1982. A New Linear Algorithm for Intersecting Convex Polygons. Computer Graphics and Image Processing, 19, pp.384-391. https://doi.org/10.1016/0146-664X(82)90023-5
- O'Rourke, J., 1994. Computational Geometry in C. Cambridge University Press: London.
- Park, Y.Y., 2013. A Study on block arrangement simulation using 3D ship structural model and block assembly tree. Thesis of Bachelor. Mokpo National University.
- Park, J.S. & Oh, S.J. 2012. A New Concave Hull Algorithm and Concaveness Measure for n-dimensional Datasets. Journal of Information Science and Engineering, 28, pp.587-600.
- Rogers, D.F., 2001. An Introduction to NURBS with Historical Perspective. Morgan Kaufmann Publishers: San Francisco.
- Tribon M3, 2014. User Manual. [Online] Available at:www.aveva.com [Accessd 1 Jan. 2014].
- Um, C.H., 2008, Development of a spatial scheduling algorithm for improvement of area efficiency. Thesis of Bachelor. Pukyong National University.