DOI QR코드

DOI QR Code

NF-${\kappa}B$ Activation in T Helper 17 Cell Differentiation

  • Park, Sang-Heon (School of Life Sciences, Gwangju Institute of Science and Technology (GIST)) ;
  • Cho, Gabi (School of Life Sciences, Gwangju Institute of Science and Technology (GIST)) ;
  • Park, Sung-Gyoo (School of Life Sciences, Gwangju Institute of Science and Technology (GIST))
  • 투고 : 2013.11.29
  • 심사 : 2014.02.04
  • 발행 : 2014.02.28

초록

CD28/T cell receptor ligation activates the NF-${\kappa}B$ signaling cascade during CD4 T cell activation. NF-${\kappa}B$ activation is required for cytokine gene expression and activated T cell survival and proliferation. Recently, many reports showed that NF-${\kappa}B$ activation is also involved in T helper (Th) cell differentiation including Th17 cell differentiation. In this review, we discuss the current literature on NF-${\kappa}B$ activation pathway and its effect on Th17 cell differentiation.

키워드

참고문헌

  1. Hayden, M. S. and S. Ghosh. 2004. Signaling to NF-kappaB. Genes Dev. 18: 2195-2224. https://doi.org/10.1101/gad.1228704
  2. Hayden, M. S. and S. Ghosh. 2011. NF-kappaB in immunobiology. Cell Res. 21: 223-244. https://doi.org/10.1038/cr.2011.13
  3. Hayden, M. S., A. P. West, and S. Ghosh. 2006. NF-kappaB and the immune response. Oncogene 25: 6758-6780. https://doi.org/10.1038/sj.onc.1209943
  4. Schulze-Luehrmann, J. and S. Ghosh. 2006. Antigen-receptor signaling to nuclear factor kappa B. Immunity 25: 701-715. https://doi.org/10.1016/j.immuni.2006.10.010
  5. Oh, H. and S. Ghosh. 2013. NF-kappaB: roles and regulation in different CD4(+) T-cell subsets. Immunol. Rev. 252: 41-51. https://doi.org/10.1111/imr.12033
  6. Alegre, M. L., K. A. Frauwirth, and C. B. Thompson. 2001. T-cell regulation by CD28 and CTLA-4. Nat. Rev. Immunol. 1: 220-228.
  7. Kane, L. P., J. Lin, and A. Weiss. 2002. It's all Rel-ative: NF-kappaB and CD28 costimulation of T-cell activation. Trends Immunol. 23: 413-420. https://doi.org/10.1016/S1471-4906(02)02264-0
  8. Frauwirth, K. A., J. L. Riley, M. H. Harris, R. V. Parry, J. C. Rathmell, D. R. Plas, R. L. Elstrom, C. H. June, and C. B. Thompson. 2002. The CD28 signaling pathway regulates glucose metabolism. Immunity 16: 769-777. https://doi.org/10.1016/S1074-7613(02)00323-0
  9. Pages, F., M. Ragueneau, R. Rottapel, A. Truneh, J. Nunes, J. Imbert, and D. Olive. 1994. Binding of phosphatidylinositol- 3-OH kinase to CD28 is required for T-cell signalling. Nature 369: 327-329. https://doi.org/10.1038/369327a0
  10. Pagan, A. J., M. Pepper, H. H. Chu, J. M. Green, and M. K. Jenkins. 2012. CD28 promotes CD4+ T cell clonal expansion during infection independently of its YMNM and PYAP motifs. J. Immunol. 189: 2909-2917. https://doi.org/10.4049/jimmunol.1103231
  11. Sanchez-Lockhart, M., E. Marin, B. Graf, R. Abe, Y. Harada, C. E. Sedwick, and J. Miller. 2004. Cutting edge: CD28-mediated transcriptional and posttranscriptional regulation of IL-2 expression are controlled through different signaling pathways. J. Immunol. 173: 7120-7124. https://doi.org/10.4049/jimmunol.173.12.7120
  12. Yokosuka, T., W. Kobayashi, K. Sakata-Sogawa, M. Takamatsu, A. Hashimoto-Tane, M. L. Dustin, M. Tokunaga, and T. Saito. 2008. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 29: 589-601. https://doi.org/10.1016/j.immuni.2008.08.011
  13. Park, S. G., J. Schulze-Luehrman, M. S. Hayden, N. Hashimoto, W. Ogawa, M. Kasuga, and S. Ghosh. 2009. The kinase PDK1 integrates T cell antigen receptor and CD28 coreceptor signaling to induce NF-kappaB and activate T cells. Nat. Immunol. 10: 158-166. https://doi.org/10.1038/ni.1687
  14. Narayan, P., B. Holt, R. Tosti, and L. P. Kane. 2006. CARMA1 is required for Akt-mediated NF-kappaB activation in T cells. Mol. Cell. Biol. 26: 2327-2336. https://doi.org/10.1128/MCB.26.6.2327-2336.2006
  15. Matsumoto, R., D. Wang, M. Blonska, H. Li, M. Kobayashi, B. Pappu, Y. Chen, D. Wang, and X. Lin. 2005. Phosphorylation of CARMA1 plays a critical role in T Cell receptor-mediated NF-kappaB activation. Immunity 23: 575-585. https://doi.org/10.1016/j.immuni.2005.10.007
  16. Garcon, F., D. T. Patton, J. L. Emery, E. Hirsch, R. Rottapel, T. Sasaki, and K. Okkenhaug. 2008. CD28 provides T-cell costimulation and enhances PI3K activity at the immune synapse independently of its capacity to interact with the p85/p110 heterodimer. Blood 111: 1464-1471.
  17. Dodson, L. F., J. S. Boomer, C. M. Deppong, D. D. Shah, J. Sim, T. L. Bricker, J. H. Russell, and J. M. Green. 2009. Targeted knock-in mice expressing mutations of CD28 reveal an essential pathway for costimulation. Mol Cell Biol. 29: 3710-3721. https://doi.org/10.1128/MCB.01869-08
  18. Villalba, M., K. Bi, J. Hu, Y. Altman, P. Bushway, E. Reits, J. Neefjes, G. Baier, R. T. Abraham, and A. Altman. 2002. Translocation of PKC[theta] in T cells is mediated by a nonconventional, PI3-K- and Vav-dependent pathway, but does not absolutely require phospholipase C. J. Cell Biol. 157: 253-263. https://doi.org/10.1083/jcb.200201097
  19. Kang, J. A., S. P. Jeong, D. Park, M. S. Hayden, S. Ghosh, and S. G. Park. 2013. Transition from heterotypic to homotypic PDK1 homodimerization is essential for TCR-mediated NF-kappaB activation. J. Immunol. 190: 4508-4515. https://doi.org/10.4049/jimmunol.1202923
  20. Chuang, H. C., J. L. Lan, D. Y. Chen, C. Y. Yang, Y. M. Chen, J. P. Li, C. Y. Huang, P. E. Liu, X. Wang, and T. H. Tan. 2011. The kinase GLK controls autoimmunity and NF-kappaB signaling by activating the kinase PKC-theta in T cells. Nat. Immunol. 12: 1113-1118. https://doi.org/10.1038/ni.2121
  21. Romagnani, S. 1994. Lymphokine production by human T cells in disease states. Annu. Rev. Immunol. 12: 227-257. https://doi.org/10.1146/annurev.iy.12.040194.001303
  22. Korn, T., E. Bettelli, M. Oukka, and V. K. Kuchroo. 2009. IL-17 and Th17 Cells. Annu. Rev. Immunol. 27: 485-517. https://doi.org/10.1146/annurev.immunol.021908.132710
  23. Ahern, P. P., A. Izcue, K. J. Maloy, and F. Powrie. 2008. The interleukin-23 axis in intestinal inflammation. Immunol. Rev. 226: 147-159. https://doi.org/10.1111/j.1600-065X.2008.00705.x
  24. Cua, D. J. and C. M. Tato. 2010. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10: 479-489. https://doi.org/10.1038/nri2800
  25. Laurence, A. and J. J. O'Shea. 2007. T(H)-17 differentiation: of mice and men. Nat. Immunol. 8: 903-905. https://doi.org/10.1038/ni0907-903
  26. Acosta-Rodriguez, E. V., G. Napolitani, A. Lanzavecchia, and F. Sallusto. 2007. Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat. Immunol. 8: 942-949.
  27. Chen, Z., C. M. Tato, L. Muul, A. Laurence, and J. J. O'Shea. 2007. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum. 56: 2936-2946. https://doi.org/10.1002/art.22866
  28. Harrington, L. E., R. D. Hatton, P. R. Mangan, H. Turner, T. L. Murphy, K. M. Murphy, and C. T. Weaver. 2005. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6: 1123-1132. https://doi.org/10.1038/ni1254
  29. Park, H., Z. Li, X. O. Yang, S. H. Chang, R. Nurieva, Y. H. Wang, Y. Wang, L. Hood, Z. Zhu, Q. Tian, and C. Dong. 2005. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6: 1133-1141. https://doi.org/10.1038/ni1261
  30. Littman, D. R. and A. Y. Rudensky. 2010. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140: 845-858. https://doi.org/10.1016/j.cell.2010.02.021
  31. El-Behi, M., B. Ciric, H. Dai, Y. Yan, M. Cullimore, F. Safavi, G. X. Zhang, B. N. Dittel, and A. Rostami. 2011. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat. Immunol. 12: 568-575. https://doi.org/10.1038/ni.2031
  32. Cooke, A. 2006. Th17 cells in inflammatory conditions. Rev. Diabet. Stud. 3: 72-75. https://doi.org/10.1900/RDS.2006.3.72
  33. Kramer, J. M. and S. L. Gaffen. 2007. Interleukin-17: a new paradigm in inflammation, autoimmunity, and therapy. J. Periodontol. 78: 1083-1093. https://doi.org/10.1902/jop.2007.060392
  34. Kaser, A., S. Zeissig, and R. S. Blumberg. 2010. Inflammatory bowel disease. Annu. Rev. Immunol. 28: 573-621. https://doi.org/10.1146/annurev-immunol-030409-101225
  35. Chebotar, I. V., M. I. Zaslavskaia, T. M. Konyshkina, and A. N. Maianskii. 1991. IgG- and C3-dependent adhesion of neutrophils in systems with allogeneic and xenogeneic ligands. Biull. Eksp. Biol. Med. 112: 403-404.
  36. Xavier, R. J. and D. K. Podolsky. 2007. Unravelling the pathogenesis of inflammatory bowel disease. Nature 448: 427-434. https://doi.org/10.1038/nature06005
  37. Zhou, L., I. I. Ivanov, R. Spolski, R. Min, K. Shenderov, T. Egawa, D. E. Levy, W. J. Leonard, and D. R. Littman. 2007. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8: 967-974. https://doi.org/10.1038/ni1488
  38. Dong, C. 2008. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol. 8: 337-348. https://doi.org/10.1038/nri2295
  39. Kobayashi, T., S. Okamoto, T. Hisamatsu, N. Kamada, H. Chinen, R. Saito, M. T. Kitazume, A. Nakazawa, A. Sugita, K. Koganei, K. Isobe, and T. Hibi. 2008. IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease. Gut 57: 1682-1689. https://doi.org/10.1136/gut.2007.135053
  40. Fujino, S., A. Andoh, S. Bamba, A. Ogawa, K. Hata, Y. Araki, T. Bamba, and Y. Fujiyama. 2003. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52: 65-70. https://doi.org/10.1136/gut.52.1.65
  41. Zhang, Z., M. Zheng, J. Bindas, P. Schwarzenberger, and J. K. Kolls. 2006. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm. Bowel Dis. 12: 382-388. https://doi.org/10.1097/01.MIB.0000218764.06959.91
  42. Park, S. G., R. Mathur, M. Long, N. Hosh, L. Hao, M. S. Hayden, and S. Ghosh. 2010. T regulatory cells maintain intestinal homeostasis by suppressing gammadelta T cells. Immunity 33: 791-803. https://doi.org/10.1016/j.immuni.2010.10.014
  43. Kotake, S., N. Udagawa, N. Takahashi, K. Matsuzaki, K. Itoh, S. Ishiyama, S. Saito, K. Inoue, N. Kamatani, M. T. Gillespie, T. J. Martin, and T. Suda. 1999. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 103: 1345-1352. https://doi.org/10.1172/JCI5703
  44. Wong, C. K., C. Y. Ho, F. W. Ko, C. H. Chan, A. S. Ho, D. S. Hui, and C. W. Lam. 2001. Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN-gamma, IL-4, IL-10 and IL-13) in patients with allergic asthma. Clin. Exp. Immunol. 125: 177-183. https://doi.org/10.1046/j.1365-2249.2001.01602.x
  45. Wong, C. K., L. C. Lit, L. S. Tam, E. K. Li, P. T. Wong, and C. W. Lam. 2008. Hyperproduction of IL-23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-mediated inflammation in auto-immunity. Clin. Immunol. 127: 385-393. https://doi.org/10.1016/j.clim.2008.01.019
  46. Kim, S. W., E. S. Kim, C. M. Moon, J. J. Park, T. I. Kim, W. H. Kim, and J. H. Cheon. 2011. Genetic polymorphisms of IL-23R and IL-17A and novel insights into their associations with inflammatory bowel disease. Gut 60: 1527-1536. https://doi.org/10.1136/gut.2011.238477
  47. Glas, J., J. Stallhofer, S. Ripke, M. Wetzke, S. Pfennig, W. Klein, J. T. Epplen, T. Griga, U. Schiemann, M. Lacher, S. Koletzko, M. Folwaczny, P. Lohse, B. Goke, T. Ochsenkuhn, B. Muller-Myhsok, and S. Brand. 2009. Novel genetic risk markers for ulcerative colitis in the IL2/IL21 region are in epistasis with IL23R and suggest a common genetic background for ulcerative colitis and celiac disease. Am. J. Gastroenterol. 104: 1737-1744. https://doi.org/10.1038/ajg.2009.163
  48. Monteleone, G., I. Monteleone, D. Fina, P. Vavassori, G. Del Vecchio Blanco, R. Caruso, R. Tersigni, L. Alessandroni, L. Biancone, G. C. Naccari, T. T. MacDonald, and F. Pallone. 2005. Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn's disease. Gastroenterology 128: 687-694. https://doi.org/10.1053/j.gastro.2004.12.042
  49. Sarra, M., I. Monteleone, C. Stolfi, M. C. Fantini, P. Sileri, G. Sica, R. Tersigni, T. T. Macdonald, F. Pallone, and G. Monteleone. 2010. Interferon-gamma-expressing cells are a major source of interleukin-21 in inflammatory bowel diseases. Inflamm. Bowel Dis. 16: 1332-1339. https://doi.org/10.1002/ibd.21238
  50. Stolfi, C., A. Rizzo, E. Franze, A. Rotondi, M. C. Fantini, M. Sarra, R. Caruso, I. Monteleone, P. Sileri, L. Franceschilli, F. Caprioli, S. Ferrero, T. T. MacDonald, F. Pallone, and G. Monteleone. 2011. Involvement of interleukin-21 in the regulation of colitis-associated colon cancer. J. Exp. Med. 208: 2279-2290. https://doi.org/10.1084/jem.20111106
  51. Ouaaz, F., J. Arron, Y. Zheng, Y. Choi, and A. A. Beg. 2002. Dendritic cell development and survival require distinct NF-kappaB subunits. Immunity 16: 257-270. https://doi.org/10.1016/S1074-7613(02)00272-8
  52. O'Keeffe, M., R. J. Grumont, H. Hochrein, M. Fuchsberger, R. Gugasyan, D. Vremec, K. Shortman, and S. Gerondakis. 2005. Distinct roles for the NF-kappaB1 and c-Rel transcription factors in the differentiation and survival of plasmacytoid and conventional dendritic cells activated by TLR-9 signals. Blood 106: 3457-3464. https://doi.org/10.1182/blood-2004-12-4965
  53. Gerondakis, S. and U. Siebenlist. 2010. Roles of the NF-kappaB pathway in lymphocyte development and function. Cold Spring Harb. Perspect. Biol. 2: a000182.
  54. Khayrullina, T., J. H. Yen, H. Jing, and D. Ganea. 2008. In vitro differentiation of dendritic cells in the presence of prostaglandin E2 alters the IL-12/IL-23 balance and promotes differentiation of Th17 cells. J. Immunol. 181: 721-735. https://doi.org/10.4049/jimmunol.181.1.721
  55. Ruan, Q., V. Kameswaran, Y. Zhang, S. Zheng, J. Sun, J. Wang, J. DeVirgiliis, H. C. Liou, A. A. Beg, and Y. H. Chen. 2011. The Th17 immune response is controlled by the Rel-RORgamma-RORgamma T transcriptional axis. J. Exp. Med. 208: 2321-2333. https://doi.org/10.1084/jem.20110462
  56. Kwon, M. J., J. Ma, Y. Ding, R. Wang, and Z. Sun. 2012. Protein kinase C-theta promotes Th17 differentiation via upregulation of Stat3. J. Immunol. 188: 5887-5897. https://doi.org/10.4049/jimmunol.1102941
  57. Brustle, A., D. Brenner, C. B. Knobbe, P. A. Lang, C. Virtanen, B. M. Hershenfield, C. Reardon, S. M. Lacher, J. Ruland, P. S. Ohashi, and T. W. Mak. 2012. The NF-kappaB regulator MALT1 determines the encephalitogenic potential of Th17 cells. J. Clin. Invest. 122: 4698-4709. https://doi.org/10.1172/JCI63528
  58. Molinero, L. L., A. Cubre, C. Mora-Solano, Y. Wang, and M. L. Alegre. 2012. T cell receptor/CARMA1/NF-kappaB signaling controls T-helper (Th) 17 differentiation. Pro. Natl. Acad. Sci. USA 109: 18529-18534. https://doi.org/10.1073/pnas.1204557109
  59. Iguchi-Hashimoto, M., T. Usui, H. Yoshifuji, M. Shimizu, S. Kobayashi, Y. Ito, K. Murakami, A. Shiomi, N. Yukawa, D. Kawabata, T. Nojima, K. Ohmura, T. Fujii, and T. Mimori. 2011. Overexpression of a minimal domain of calpastatin suppresses IL-6 production and Th17 development via reduced NF-kappaB and increased STAT5 signals. PloS one 6: e27020. https://doi.org/10.1371/journal.pone.0027020
  60. Okamoto, K., Y. Iwai, M. Oh-Hora, M. Yamamoto, T. Morio, K. Aoki, K. Ohya, A. M. Jetten, S. Akira, T. Muta, and H. Takayanagi. 2010. IkappaBzeta regulates T(H)17 development by cooperating with ROR nuclear receptors. Nature 464: 1381-1385. https://doi.org/10.1038/nature08922
  61. Stockinger, B. 2007. Good for Goose, but not for Gander: IL-2 interferes with Th17 differentiation. Immunity 26: 278-279 https://doi.org/10.1016/j.immuni.2007.03.001
  62. Visekruna, A., M. Huber, A. Hellhund, E. Bothur, K. Reinhard, N. Bollig, N. Schmidt, T. Joeris, M. Lohoff, and U. Steinhoff. 2010. c-Rel is crucial for the induction of Foxp3(+) regulatory CD4(+) T cells but not T(H)17 cells. Eur. J. Immunol. 40: 671-676. https://doi.org/10.1002/eji.200940260
  63. Liu, X., H. Li, B. Zhong, M. Blonska, S. Gorjestani, M. Yan, Q. Tian, D. E. Zhang, X. Lin, and C. Dong. 2013. USP18 inhibits NF-kappaB and NFAT activation during Th17 differentiation by deubiquitinating the TAK1-TAB1 complex. J. Exp. Med. 210: 1575-1590. https://doi.org/10.1084/jem.20122327

피인용 문헌

  1. Direct Interaction of CD40 on Tumor Cells with CD40L on T Cells Increases the Proliferation of Tumor Cells by Enhancing TGF-β Production and Th17 Differentiation vol.10, pp.5, 2014, https://doi.org/10.1371/journal.pone.0125742
  2. Anti-inflammatory potential of Capparis spinosa L . in vivo in mice through inhibition of cell infiltration and cytokine gene expression vol.17, pp.None, 2014, https://doi.org/10.1186/s12906-017-1569-7
  3. 4-(Hydroxymethyl)catechol Extracted From Fungi in Marine Sponges Attenuates Rheumatoid Arthritis by Inhibiting PI3K/Akt/NF-κB Signaling vol.9, pp.None, 2014, https://doi.org/10.3389/fphar.2018.00726
  4. A Review on Pityriasis Rubra Pilaris vol.19, pp.3, 2018, https://doi.org/10.1007/s40257-017-0338-1
  5. Protein Phosphatase 1α and Cofilin Regulate Nuclear Translocation of NF-κB and Promote Expression of the Anti-Inflammatory Cytokine Interleukin-10 by T Cells vol.38, pp.22, 2014, https://doi.org/10.1128/mcb.00041-18
  6. miR-455-5p downregulation promotes inflammation pathways in the relapse phase of relapsing-remitting multiple sclerosis disease vol.71, pp.2, 2014, https://doi.org/10.1007/s00251-018-1087-x
  7. Health-Promoting Properties of Proanthocyanidins for Intestinal Dysfunction vol.12, pp.1, 2014, https://doi.org/10.3390/nu12010130
  8. LncRNAs Target Ferroptosis-Related Genes and Impair Activation of CD4+ T Cell in Gastric Cancer vol.9, pp.None, 2014, https://doi.org/10.3389/fcell.2021.797339