DOI QR코드

DOI QR Code

Insights into the Role of Follicular Helper T Cells in Autoimmunity

  • Park, Hong-Jai (Department of Life Science, Hanyang University) ;
  • Kim, Do-Hyun (Department of Life Science, Hanyang University) ;
  • Lim, Sang-Ho (Department of Life Science, Hanyang University) ;
  • Kim, Won-Ju (Department of Life Science, Hanyang University) ;
  • Youn, Jeehee (Department of Anatomy & Cell Biology, College of Medicine, Hanyang University) ;
  • Choi, Youn-Soo (Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology) ;
  • Choi, Je-Min (Department of Life Science, Hanyang University)
  • 투고 : 2013.12.03
  • 심사 : 2014.01.15
  • 발행 : 2014.02.28

초록

Follicular helper T ($T_{FH}$) cells are recently highlighted as their crucial role for humoral immunity to infection as well as their abnormal control to induce autoimmune disease. During an infection, na$\ddot{i}$ve T cells are differentiating into $T_{FH}$ cells which mediate memory B cells and long-lived plasma cells in germinal center (GC). $T_{FH}$ cells are characterized by their expression of master regulator, Bcl-6, and chemokine receptor, CXCR5, which are essential for the migration of T cells into the B cell follicle. Within the follicle, crosstalk occurs between B cells and $T_{FH}$ cells, leading to class switch recombination and affinity maturation. Various signaling molecules, including cytokines, surface molecules, and transcription factors are involved in $T_{FH}$ cell differentiation. IL-6 and IL-21 cytokine-mediated STAT signaling pathways, including STAT1 and STAT3, are crucial for inducing Bcl-6 expression and $T_{FH}$ cell differentiation. $T_{FH}$ cells express important surface molecules such as ICOS, PD-1, IL-21, BTLA, SAP and CD40L for mediating the interaction between T and B cells. Recently, two types of microRNA (miRNA) were found to be involved in the regulation of $T_{FH}$ cells. The miR-17-92 cluster induces Bcl-6 and $T_{FH}$ cell differentiation, whereas miR-10a negatively regulates Bcl-6 expression in T cells. In addition, follicular regulatory T ($T_{FR}$) cells are studied as thymus-derived $CXCR5^+PD-1^+Foxp3^+\;T_{reg}$ cells that play a significant role in limiting the GC response. Regulation of $T_{FH}$ cell differentiation and the GC reaction via miRNA and $T_{FR}$ cells could be important regulatory mechanisms for maintaining immune tolerance and preventing autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Here, we review recent studies on the various factors that affect $T_{FH}$ cell differentiation, and the role of $T_{FH}$ cells in autoimmune diseases.

키워드

참고문헌

  1. Johnston, R. J., A. C. Poholek, D. DiToro, I. Yusuf, D. Eto, B. Barnett, A. L. Dent, J. Craft, and S. Crotty. 2009. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325: 1006-1010. https://doi.org/10.1126/science.1175870
  2. Nurieva, R. I., Y. Chung, G. J. Martinez, X. O. Yang, S. Tanaka, T. D. Matskevitch, Y. H. Wang, and C. Dong. 2009. Bcl6 mediates the development of T follicular helper cells. Science 325: 1001-1005. https://doi.org/10.1126/science.1176676
  3. Yu, D., S. Rao, L. M. Tsai, S. K. Lee, Y. He, E. L. Sutcliffe, M. Srivastava, M. Linterman, L. Zheng, N. Simpson, J. I. Ellyard, I. A. Parish, C. S. Ma, Q. J. Li, C. R. Parish, C. R. Mackay, and C. G. Vinuesa. 2009. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31: 457-468. https://doi.org/10.1016/j.immuni.2009.07.002
  4. Nurieva, R. I., Y. Chung, D. Hwang, X. O. Yang, H. S. Kang, L. Ma, Y. H. Wang, S. S. Watowich, A. M. Jetten, Q. Tian, and C. Dong. 2008. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29: 138-149. https://doi.org/10.1016/j.immuni.2008.05.009
  5. Crotty, S. 2011. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29: 621-663. https://doi.org/10.1146/annurev-immunol-031210-101400
  6. Qi, H., J. L. Cannons, F. Klauschen, P. L. Schwartzberg, and R. N. Germain. 2008. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455: 764-769. https://doi.org/10.1038/nature07345
  7. Dong, C., U. A. Temann, and R. A. Flavell. 2001. Cutting edge: critical role of inducible costimulator in germinal center reactions. J. Immunol. 166: 3659-3662. https://doi.org/10.4049/jimmunol.166.6.3659
  8. Iwai, H., M. Abe, S. Hirose, F. Tsushima, K. Tezuka, H. Akiba, H. Yagita, K. Okumura, H. Kohsaka, N. Miyasaka, and M. Azuma. 2003. Involvement of inducible costimulator- B7 homologous protein costimulatory pathway in murine lupus nephritis. J. Immunol. 171: 2848-2854. https://doi.org/10.4049/jimmunol.171.6.2848
  9. Lu, K. T., Y. Kanno, J. L. Cannons, R. Handon, P. Bible, A. G. Elkahloun, S. M. Anderson, L. Wei, H. Sun, J. J. O'Shea, and P. L. Schwartzberg. 2011. Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells. Immunity 35: 622-632. https://doi.org/10.1016/j.immuni.2011.07.015
  10. Breitfeld, D., L. Ohl, E. Kremmer, J. Ellwart, F. Sallusto, M. Lipp, and R. F rster. 2000. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192: 1545-1552. https://doi.org/10.1084/jem.192.11.1545
  11. Schaerli, P., K. Willimann, A. B. Lang, M. Lipp, P. Loetscher, and B. Moser. 2000. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192: 1553-1562. https://doi.org/10.1084/jem.192.11.1553
  12. Balkwill, F. 2004. Cancer and the chemokine network. Nat. Rev. Cancer 4: 540-550. https://doi.org/10.1038/nrc1388
  13. Jacob, J., G. Kelsoe, K. Rajewsky, and U. Weiss. 1991. Intraclonal generation of antibody mutants in germinal centres. Nature 354: 389-392. https://doi.org/10.1038/354389a0
  14. Berek, C., A. Berger, and M. Apel. 1991. Maturation of the immune response in germinal centers. Cell 67: 1121-1129. https://doi.org/10.1016/0092-8674(91)90289-B
  15. Liu, Y. J., F. Malisan, O. de Bouteiller, C. Guret, S. Lebecque, J. Banchereau, F. C. Mills, E. E. Max, and H. Martinez- Valdez. 1996. Within germinal centers, isotype switching of immunoglobulin genes occurs after the onset of somatic mutation. Immunity 4: 241-250. https://doi.org/10.1016/S1074-7613(00)80432-X
  16. Kang, S. G., W. H. Liu, P. Lu, H. Y. Jin, H. W. Lim, J. Shepherd, D. Fremgen, E. Verdin, M. B. Oldstone, H. Qi, J. R. Teijaro, and C. Xiao. 2013. MicroRNAs of the miR-17 approximately 92 family are critical regulators of T(FH) differentiation. Nat. Immunol. 14: 849-857. https://doi.org/10.1038/ni.2648
  17. Baumjohann, D., R. Kageyama, J. M. Clingan, M. M. Morar, S. Patel, D. de Kouchkovsky, O. Bannard, J. A. Bluestone, M. Matloubian, K. M. Ansel, and L. T. Jeker. 2013. The microRNA cluster miR-17-92 promotes TFH cell differentiation and represses subset-inappropriate gene expression. Nat. Immunol. 14: 840-848. https://doi.org/10.1038/ni.2642
  18. Takahashi, H., T. Kanno, S. Nakayamada, K. Hirahara, G. Scium , S. A. Muljo, S. Kuchen, R. Casellas, L. Wei, Y. Kanno, and J. J. O'Shea. 2012. TGF-beta and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat. Immunol. 13: 587-595. https://doi.org/10.1038/ni.2286
  19. Vinuesa, C. G. and M. C. Cook. 2001. The molecular basis of lymphoid architecture and B cell responses: implications for immunodeficiency and immunopathology. Curr. Mol. Med. 1: 689-725. https://doi.org/10.2174/1566524013363276
  20. King, C., S. G. Tangye, and C. R. Mackay. 2008. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26: 741-766. https://doi.org/10.1146/annurev.immunol.26.021607.090344
  21. Chung, Y., S. Tanaka, F. Chu, R. I. Nurieva, G. J. Martinez, S. Rawal, Y. H. Wang, H. Lim, J. M. Reynolds, X. H. Zhou, H. M. Fan, Z. M. Liu, S. S. Neelapu, and C. Dong. 2011. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17: 983-988. https://doi.org/10.1038/nm.2426
  22. Fazilleau, N., L. J. McHeyzer-Williams, H. Rosen, M. G. McHeyzer-Williams. 2009. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol. 10: 375-384. https://doi.org/10.1038/ni.1704
  23. Chtanova, T., S. G. Tangye, R. Newton, N. Frank, M. R. Hodge, M. S. Rolph, and C. R. Mackay. 2004. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 173: 68-78. https://doi.org/10.4049/jimmunol.173.1.68
  24. Choi, Y. S., R. Kageyama, D. Eto, T. C. Escobar, R. J. Johnston, L. Monticelli, C. Lao, and S. Crotty. 2011. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34: 932-946. https://doi.org/10.1016/j.immuni.2011.03.023
  25. McAdam, A. J., T. T. Chang, A. E. Lumelsky, E. A. Greenfield, V. A. Boussiotis, J. S. Duke-Cohan, T. Chernova, N. Malenkovich, C. Jabs, V. K. Kuchroo, V. Ling, M. Collins, A. H. Sharpe, and G. J. Freeman. 2000. Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of $CD4^{+}$ T cells. J. Immunol. 165: 5035-5040. https://doi.org/10.4049/jimmunol.165.9.5035
  26. Hutloff, A., A. M. Dittrich, K. C. Beier, B. Eljaschewitsch, R. Kraft, I. Anagnostopoulos, and R. A. Kroczek. 1999. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397: 263-266. https://doi.org/10.1038/16717
  27. Vogelzang, A., H. M. McGuire, D. Yu, J. Sprent, C. R. Mackay, and C. King. 2008. A fundamental role for interleukin- 21 in the generation of T follicular helper cells. Immunity 29: 127-137. https://doi.org/10.1016/j.immuni.2008.06.001
  28. Gigoux, M., J. Shang, Y. Pak, M. Xu, J. Choe, T. W. Mak, and W. K. Suh. 2009. Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. Proc. Natl. Acad. Sci. USA 106: 20371-20376. https://doi.org/10.1073/pnas.0911573106
  29. Xu, H., X. Li, D. Liu, J. Li, X. Zhang, X. Chen, S. Hou, L. Peng, C. Xu, W. Liu, L. Zhang, and H. Qi. 2013. Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility. Nature 496: 523-527. https://doi.org/10.1038/nature12058
  30. Brunet, A., A. Bonni, M. J. Zigmond, M. Z. Lin, P. Juo, L. S. Hu, M. J. Anderson, K. C. Arden, J. Blenis, and M. E. Greenberg. 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857-868. https://doi.org/10.1016/S0092-8674(00)80595-4
  31. Yuan, T. L. and L. C. Cantley. 2008. PI3K pathway alterations in cancer: variations on a theme. Oncogene 27: 5497-5510. https://doi.org/10.1038/onc.2008.245
  32. Kerdiles, Y. M., E. L. Stone, D. R. Beisner, M. A. McGargill, I. L. Ch'en, C. Stockmann, C. D. Katayama, and S. M. Hedrick. 2010. Foxo transcription factors control regulatory T cell development and function. Immunity 33: 890-904. https://doi.org/10.1016/j.immuni.2010.12.002
  33. Oestreich, K. J., S. E. Mohn, and A. S. Weinmann. 2012. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat. Immunol. 13: 405-411.
  34. Spolski, R. and W. J. Leonard. 2008. Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu. Rev. Immunol. 26: 57-79. https://doi.org/10.1146/annurev.immunol.26.021607.090316
  35. Diehl, S. A., H. Schmidlin, M. Nagasawa, B. Blom, and H. Spits. 2012. IL-6 Triggers IL-21 production by human CD4(+) T cells to drive STAT3-dependent plasma cell differentiation in B cells. Immunol. Cell Biol. 90: 802-811. https://doi.org/10.1038/icb.2012.17
  36. Eddahri, F., S. Denanglaire, F. Bureau, R. Spolski, W. J. Leonard, O. Leo, and F. Andris. 2009. Interleukin-6/STAT3 signaling regulates the ability of naive T cells to acquire B-cell help capacities. Blood 113: 2426-2433. https://doi.org/10.1182/blood-2008-04-154682
  37. Choi, Y. S., D. Eto, J. A. Yang, C. Lao, and S. Crotty. 2013. Cutting edge: STAT1 is required for IL-6-mediated Bcl6 induction for early follicular helper cell differentiation. J. Immunol. 190: 3049-3053. https://doi.org/10.4049/jimmunol.1203032
  38. Eto, D., C. Lao, D. DiToro, B. Barnett, T. C. Escobar, R. Kageyama, I. Yusuf, and S. Crotty. 2011. IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (Tfh) differentiation. PLoS One 6: e17739. https://doi.org/10.1371/journal.pone.0017739
  39. Poholek, A. C., K. Hansen, S. G. Hernandez, D. Eto, A. Chandele, J. S. Weinstein, X. Dong, J. M. Odegard, S. M. Kaech, A. L. Dent, S. Crotty, and J. Craft. 2010. In vivo regulation of Bcl6 and T follicular helper cell development. J. Immunol. 185: 313-326. https://doi.org/10.4049/jimmunol.0904023
  40. Takeda, K., T. Kaisho, N. Yoshida, J. Takeda, T. Kishimoto, and S. Akira. 1998. Stat3 activation is responsible for IL-6-dependent T cell proliferation through preventing apoptosis: generation and characterization of T cell-specific Stat3-deficient mice. J. Immunol. 161: 4652-4660.
  41. Nurieva, R., X. O. Yang, G. Martinez, Y. Zhang, A. D. Panopoulos, L. Ma, K. Schluns, Q. Tian, S. S. Watowich, A. M. Jetten, and C. Dong. 2007. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448: 480-483. https://doi.org/10.1038/nature05969
  42. Yang, Y., J. Ochando, A. Yopp, J. S. Bromberg, and Y. Ding. 2005. IL-6 plays a unique role in initiating c-Maf expression during early stage of CD4 T cell activation. J. Immunol. 174: 2720-2729. https://doi.org/10.4049/jimmunol.174.5.2720
  43. Jang, E., S. H. Cho, H. Park, D. J. Paik, J. M. Kim, and J. Youn. 2009. A positive feedback loop of IL-21 signaling provoked by homeostatic $CD4^{+}CD25^{-} $ T cell expansion is essential for the development of arthritis in autoimmune K/BxN mice. J. Immunol. 182: 4649-4656. https://doi.org/10.4049/jimmunol.0804350
  44. Ozaki, K., R. Spolski, R. Ettinger, H. P. Kim, G. Wang, C. F. Qi, P. Hwu, D. J. Shaffer, S. Akilesh, D. C. Roopenian, H. C. Morse, 3rd, P. E. Lipsky, and W. J. Leonard. 2004. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J. Immunol. 173: 5361-5371. https://doi.org/10.4049/jimmunol.173.9.5361
  45. Nakayamada, S., Y. Kanno, H. Takahashi, D. Jankovic, K. T. Lu, T. A. Johnson, H. W. Sun, G. Vahedi, O. Hakim, R. Handon, P. L. Schwartzberg, G. L. Hager, and J. J. O'Shea. 2011. Early Th1 cell differentiation is marked by a Tfh cell-like transition. Immunity 35: 919-931. https://doi.org/10.1016/j.immuni.2011.11.012
  46. Lee, S. K., D. G. Silva, J. L. Martin, A. Pratama, X. Hu, P. P. Chang, G. Walters, and C. G. Vinuesa. 2012. Interferon- gamma excess leads to pathogenic accumulation of follicular helper T cells and germinal centers. Immunity 37: 880-892. https://doi.org/10.1016/j.immuni.2012.10.010
  47. Zhou, G. and S. J. Ono. 2005. Induction of BCL-6 gene expression by interferon-gamma and identification of an IRE in exon I. Exp. Mol. Pathol. 78: 25-35.
  48. Dent, A. L., A. L. Shaffer, X. Yu, D. Allman, and L. M. Staudt. 1997. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276: 589-592. https://doi.org/10.1126/science.276.5312.589
  49. Klein, U. and R. Dalla-Favera. 2008. Germinal centres: role in B-cell physiology and malignancy. Nat. Rev. Immunol. 8: 22-33. https://doi.org/10.1038/nri2217
  50. Ye, B. H., G. Cattoretti, Q. Shen, J. Zhang, N. Hawe, R. de Waard, C. Leung, M. Nouri-Shirazi, A. Orazi, R. S. Chaganti, P. Rothman, A. M. Stall, P. P. Pandolfi, and R. Dalla-Favera. 1997. The BCL-6 proto-oncogene controls germinal-centre formation and Th2-type inflammation. Nat. Genet. 16: 161-170 https://doi.org/10.1038/ng0697-161
  51. Toyama, H., S. Okada, M. Hatano, Y. Takahashi, N. Takeda, H. Ichii, T. Takemori, Y. Kuroda, and T. Tokuhisa. 2002. Memory B cells without somatic hypermutation are generated from Bcl6-deficient B cells. Immunity 17: 329-339. https://doi.org/10.1016/S1074-7613(02)00387-4
  52. Crotty, S., R. J. Johnston, and S. P. Schoenberger. 2010. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat. Immunol. 11: 114-120. https://doi.org/10.1038/ni.1837
  53. Haynes, N. M., C. D. Allen, R. Lesley, K. M. Ansel, N. Killeen, and J. G. Cyster. 2007. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J. Immunol. 179: 5099-5108. https://doi.org/10.4049/jimmunol.179.8.5099
  54. Turner, C. A. Jr., D. H. Mack, and M. M. Davis. 1994. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77: 297-306. https://doi.org/10.1016/0092-8674(94)90321-2
  55. Martins, G. and K. Calame. 2008. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu. Rev. Immunol. 26: 133-169. https://doi.org/10.1146/annurev.immunol.26.021607.090241
  56. Johnston, R. J., Y. S. Choi, J. A. Diamond, J. A. Yang, and S. Crotty. 2012. STAT5 is a potent negative regulator of TFH cell differentiation. J. Exp. Med. 209: 243-250. https://doi.org/10.1084/jem.20111174
  57. Kwon, H., D. Thierry-Mieg, J. Thierry-Mieg, H. P. Kim, J. Oh, C. Tunyaplin, S. Carotta, C. E. Donovan, M. L. Goldman, P. Tailor, K. Ozato, D. E. Levy, S. L. Nutt, K. Calame, and W. J. Leonard. 2009. Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity 31: 941-952. https://doi.org/10.1016/j.immuni.2009.10.008
  58. Sakaguchi, S. 2004. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22: 531-562. https://doi.org/10.1146/annurev.immunol.21.120601.141122
  59. Kanangat, S., P. Blair, R. Reddy, M. Daheshia, V. Godfrey, B. T. Rouse, and E. Wilkinson. 1996. Disease in the scurfy (sf) mouse is associated with overexpression of cytokine genes. Eur. J. Immunol. 26: 161-165. https://doi.org/10.1002/eji.1830260125
  60. Clark, L. B., M. W. Appleby, M. E. Brunkow, J. E. Wilkinson, S. F. Ziegler, and F. Ramsdell. 1999. Cellular and molecular characterization of the scurfy mouse mutant. J. Immunol. 162: 2546-2554.
  61. Wollenberg, I., A. Agua-Doce, A. Hernandez, C. Almeida, V. G. Oliveira, J. Faro, and L. Graca. 2011. Regulation of the germinal center reaction by $Foxp3^{+}$ follicular regulatory T cells. J. Immunol. 187: 4553-4560. https://doi.org/10.4049/jimmunol.1101328
  62. Linterman, M. A., W. Pierson, S. K. Lee, A. Kallies, S. Kawamoto, T. F. Rayner, M. Srivastava, D. P. Divekar, L. Beaton, J. J. Hogan, S. Fagarasan, A. Liston, K.G. Smith, and C. G. Vinuesa. 2011. $Foxp3^{+}$ follicular regulatory T cells control the germinal center response. Nat. Med. 17: 975-982. https://doi.org/10.1038/nm.2425
  63. Sage, P. T., L. M. Francisco, C. V. Carman, A. H. Sharpe. 2013. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nat. Immunol. 14: 152-161.
  64. Cobb, B. S., T. B. Nesterova, E. Thompson, A. Hertweck, E. O'Connor, J. Godwin, C. B. Wilson, N. Brockdorff, A. G. Fisher, S. T. Smale, and M. Merkenschlager. 2005. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J. Exp. Med. 201: 1367-1373. https://doi.org/10.1084/jem.20050572
  65. Muljo, S. A., K. M. Ansel, C. Kanellopoulou, D. M. Livingston, A. Rao, and K. Rajewsky. 2005. Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 202:261-269. https://doi.org/10.1084/jem.20050678
  66. Doria, A., M. Zen, M. Canova, S. Bettio, N. Bassi, L. Nalotto, M. Rampudda, A. Ghirardello, and L. Iaccarino. 2010. SLE diagnosis and treatment: when early is early. Autoimmun. Rev. 10: 55-60. https://doi.org/10.1016/j.autrev.2010.08.014
  67. Luzina, I. G., S. P. Atamas, C. E. Storrer, L. C. daSilva, G. Kelsoe, J. C. Papadimitriou, and B. S. Handwerger. 2001. Spontaneous formation of germinal centers in autoimmune mice. J. Leukoc. Biol. 70: 578-584.
  68. Simpson, N., P. A. Gatenby, A. Wilson, S. Malik, D. A. Fulcher, S. G. Tangye, H. Manku, T. J. Vyse, G. Roncador, G. A. Huttley, C. C. Goodnow, C. G. Vinuesa, and M. C. Cook. 2010. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 62: 234-244. https://doi.org/10.1002/art.25032
  69. Daikh, D. I., B. K. Finck, P. S. Linsley, D. Hollenbaugh, and D. Wofsy. 1997. Long-term inhibition of murine lupus by brief simultaneous blockade of the B7/CD28 and CD40/gp39 costimulation pathways. J. Immunol. 159: 3104-3108.
  70. Vinuesa, C. G., M. C. Cook, C. Angelucci, V. Athanasopoulos, L. Rui, K. M. Hill, D. Yu, H. Domaschenz, B. Whittle, T. Lambe, I. S. Roberts, R. R. Copley, J. I. Bell, R. J. Cornall, and C. C. Goodnow. 2005. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435: 452-458. https://doi.org/10.1038/nature03555
  71. Linterman, M. A., R. J. Rigby, R. K. Wong, D. Yu, R. Brink, J. L. Cannons, P. L. Schwartzberg, M. C. Cook, G. D. Walters, and C. G. Vinuesa. 2009. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med. 206: 561-576. https://doi.org/10.1084/jem.20081886
  72. Bubier, J. A., T. J. Sproule, O. Foreman, R. Spolski, D. J. Shaffer, H. C. Morse 3rd, W. J. Leonard, and D. C. Roopenian. 2009. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc. Natl. Acad. Sci. USA 106: 1518-1523. https://doi.org/10.1073/pnas.0807309106
  73. Dolff, S., W. H. Abdulahad, J. Westra, B. Doornbos-van der Meer, P. C. Limburg, C. G. Kallenberg, and M. Bijl. 2011. Increase in IL-21 producing T-cells in patients with systemic lupus erythematosus. Arthritis Res. Ther. 13: R157. https://doi.org/10.1186/ar3474
  74. Wong, C. K., P. T. Wong, L. S. Tam, E. K. Li, D. P. Chen, and C. W. Lam. 2010. Elevated production of B cell chemokine CXCL13 is correlated with systemic lupus erythematosus disease activity. J. Clin. Immunol. 30: 45-52. https://doi.org/10.1007/s10875-009-9325-5
  75. Young, D. A., M. Hegen, H. L. Ma, M. J. Whitters, L. M. Albert, L. Lowe, M. Senices, P. W. Wu, B. Sibley, Y. Leathurby, T. P. Brown, C. Nickerson-Nutter, J. C. Keith Jr, and M. Collins. 2007. Blockade of the interleukin-21/interleukin- 21 receptor pathway ameliorates disease in animal models of rheumatoid arthritis. Arthritis Rheum. 56: 1152- 1163. https://doi.org/10.1002/art.22452
  76. Kouskoff, V., A. S. Korganow, V. Duchatelle, C. Degott, C. Benoist, and D. Mathis. 1996. Organ-specific disease provoked by systemic autoimmunity. Cell 87: 811-822. https://doi.org/10.1016/S0092-8674(00)81989-3
  77. Victoratos, P. and G. Kollias. 2009. Induction of autoantibody- mediated spontaneous arthritis critically depends on follicular dendritic cells. Immunity 30: 130-142. https://doi.org/10.1016/j.immuni.2008.10.019
  78. Platt, A. M., V. B. Gibson, A. Patakas, R. A. Benson, S. G. Nadler, J. M. Brewer, I. B. McInnes, and P. Garside. 2010. Abatacept limits breach of self-tolerance in a murine model of arthritis via effects on the generation of T follicular helper cells. J. Immunol. 185: 1558-1567. https://doi.org/10.4049/jimmunol.1001311
  79. Liu, R., Q. Wu, D. Su, N. Che, H. Chen, L. Geng, J. Chen, W. Chen, X. Li, and L. Sun. 2012. A regulatory effect of IL-21 on T follicular helper-like cell and B cell in rheumatoid arthritis. Arthritis Res. Ther. 14: R255. https://doi.org/10.1186/ar4100

피인용 문헌

  1. C-X-C chemokine receptor type 5 gene polymorphism affects gene expression in CD4+ T cells and is associated with increased risk of colorectal cancer vol.35, pp.8, 2014, https://doi.org/10.1007/s13277-014-2069-8
  2. PPARγ Negatively Regulates T Cell Activation to Prevent Follicular Helper T Cells and Germinal Center Formation vol.9, pp.6, 2014, https://doi.org/10.1371/journal.pone.0099127
  3. Expansion of Circulating T Follicular Helper Cells in Children with Acute Henoch-Schönlein Purpura vol.2015, pp.None, 2014, https://doi.org/10.1155/2015/742535
  4. Soluble B7-H2 as a Novel Marker in Early Evaluation of the Severity of Acute Pancreatitis vol.46, pp.2, 2014, https://doi.org/10.1309/lmfsrh0v82hfxppi
  5. Regulatory and Helper Follicular T Cells and Antibody Avidity to Simian Immunodeficiency Virus Glycoprotein 120 vol.195, pp.7, 2014, https://doi.org/10.4049/jimmunol.1402699
  6. Increased circulating follicular helper T cells with decreased programmed death-1 in chronic renal allograft rejection vol.16, pp.1, 2015, https://doi.org/10.1186/s12882-015-0172-8
  7. Loss of interleukin-21 leads to atrophic germinal centers in multicentric Castleman’s disease vol.95, pp.1, 2014, https://doi.org/10.1007/s00277-015-2500-2
  8. Follicular helper T cell in immunity and autoimmunity vol.49, pp.5, 2014, https://doi.org/10.1590/1414-431x20165209
  9. Distinct phenotypic subpopulations of circulating CD4+CXCR5+ follicular helper T cells in children with active IgA vasculitis vol.17, pp.None, 2014, https://doi.org/10.1186/s12865-016-0176-6
  10. Sex-Based Selectivity of PPARγ Regulation in Th1, Th2, and Th17 Differentiation vol.17, pp.8, 2014, https://doi.org/10.3390/ijms17081347
  11. Autoimmunity in primary T-cell immunodeficiencies vol.12, pp.9, 2014, https://doi.org/10.1080/1744666x.2016.1177458
  12. Immunomodulation of inflammatory leukocyte markers during intravenous immunoglobulin treatment associated with clinical efficacy in chronic inflammatory demyelinating polyradiculoneuropathy vol.6, pp.10, 2016, https://doi.org/10.1002/brb3.516
  13. Tfr cells lack IL-2Rα but express decoy IL-1R2 and IL-1Ra and suppress the IL-1–dependent activation of Tfh cells vol.2, pp.15, 2017, https://doi.org/10.1126/sciimmunol.aan0368
  14. Differences in Tfh Cell Response between the Graft and Spleen with Chronic Allograft Nephropathy vol.26, pp.1, 2014, https://doi.org/10.3727/096368916x692816
  15. Increased levels of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells, and associated factors Bcl-6, CXCR5, IL-21 and IL-6 contribute to repeated implantation failure vol.14, pp.6, 2014, https://doi.org/10.3892/etm.2017.5334
  16. Constitutive Changes in Circulating Follicular Helper T Cells and Their Subsets in Patients with Graves' Disease vol.2018, pp.None, 2014, https://doi.org/10.1155/2018/8972572
  17. Altered Expression of MicroRNAs in Rheumatoid Arthritis vol.119, pp.1, 2018, https://doi.org/10.1002/jcb.26205
  18. Bone marrow-derived mesenchymal stem cells inhibit T follicular helper cell in lupus-prone mice vol.27, pp.1, 2018, https://doi.org/10.1177/0961203317711013
  19. Atherogenic dyslipidemia promotes autoimmune follicular helper T cell responses via IL-27 vol.19, pp.6, 2014, https://doi.org/10.1038/s41590-018-0102-6
  20. BioTarget: A Computational Framework Identifying Cancer Type Specific Transcriptional Targets of Immune Response Pathways vol.9, pp.None, 2014, https://doi.org/10.1038/s41598-019-45304-x
  21. Upregulation of miR-221/222 expression in rheumatoid arthritis (RA) patients: correlation with disease activity vol.19, pp.1, 2019, https://doi.org/10.1007/s10238-018-0524-3
  22. Imbalance of circulating Tfr/Tfh ratio in patients with rheumatoid arthritis vol.19, pp.1, 2014, https://doi.org/10.1007/s10238-018-0530-5
  23. Early T Follicular Helper Cell Responses and Germinal Center Reactions Are Associated with Viremia Control in Immunized Rhesus Macaques vol.93, pp.4, 2019, https://doi.org/10.1128/jvi.01687-18
  24. The pathogenesis of thyroid autoimmune diseases: New T lymphocytes – Cytokines circuits beyond the Th1−Th2 paradigm vol.234, pp.3, 2014, https://doi.org/10.1002/jcp.27180
  25. Characterization of MicroRNA and Gene Expression Profiles Following Ricin Intoxication vol.11, pp.5, 2014, https://doi.org/10.3390/toxins11050250
  26. Curcumin Elevates TFH Cells and Germinal Center B Cell Response for Antibody Production in Mice vol.19, pp.5, 2014, https://doi.org/10.4110/in.2019.19.e35
  27. Immune-related adverse events of checkpoint inhibitors: Insights into immunological dysregulation vol.213, pp.None, 2014, https://doi.org/10.1016/j.clim.2020.108377
  28. Imbalance in B cell and T Follicular Helper Cell Subsets in Pulmonary Sarcoidosis vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-57741-0
  29. Native/citrullinated LL37-specific T-cells help autoantibody production in Systemic Lupus Erythematosus vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-62480-3
  30. Complementary Effects of Carbamylated and Citrullinated LL37 in Autoimmunity and Inflammation in Systemic Lupus Erythematosus vol.22, pp.4, 2021, https://doi.org/10.3390/ijms22041650
  31. Dexamethasone reduces autoantibody levels in MRL/lpr mice by inhibiting Tfh cell responses vol.25, pp.17, 2021, https://doi.org/10.1111/jcmm.16785