참고문헌
- Allavena P, Germano G, Marchesi F, and Mantovani A (2011). Chemokines in cancer related inflammation. Exp Cell Res, 317, 664-73. https://doi.org/10.1016/j.yexcr.2010.11.013
- Bartel DP (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136, 215-33. https://doi.org/10.1016/j.cell.2009.01.002
- Carthew RW (2006). Gene regulation by microRNAs. Curr Opin Genet Dev, 16, 203-8. https://doi.org/10.1016/j.gde.2006.02.012
- Liu C, Zhang F, Li T, et al (2012). MirSNP, a database of polymorphisms altering.pdf. BMC Genomics, 13, 611. https://doi.org/10.1186/1471-2164-13-611
- Crone SG, Jacobsen A, Federspiel B, et al (2012). microRNA-146a inhibits G protein-coupled receptor-mediated activation of NF-kappaB by targeting CARD10 and COPS8 in gastric cancer. Mol Cancer, 11, 71. https://doi.org/10.1186/1476-4598-11-71
- Engels EA, Wu X, Gu J, et al (2007). Systematic evaluation of genetic variants in the inflammation pathway and risk of lung cancer. Cancer Res, 67, 6520-7. https://doi.org/10.1158/0008-5472.CAN-07-0370
- Gonda TA, Tu S, and Wang TC (2009). Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle, 8, 2005-13. https://doi.org/10.4161/cc.8.13.8985
- Grivennikov SI, Greten FR, and Karin M (2010). Immunity, inflammation, and cancer. Cell, 140, 883-99. https://doi.org/10.1016/j.cell.2010.01.025
- Gruber AR, Lorenz R, Bernhart SH, et al (2008). The Vienna RNA websuite. Nucleic Acids Res, 36, W70-4.
- Hartgrink HH, Jansen EP, van Grieken NC, and van de Velde CJ (2009). Gastric cancer. Lancet, 374, 477-90. https://doi.org/10.1016/S0140-6736(09)60617-6
- He L, Thomson JM, Hemann MT, et al (2005). A microRNA polycistron as a potential human oncogene. Nature, 435, 828-33. https://doi.org/10.1038/nature03552
- Hiard S, Charlier C, Coppieters W, et al (2010). Patrocles: a database of polymorphic miRNA-mediated gene regulation in vertebrates. Nucleic Acids Res, 38, D640-51. https://doi.org/10.1093/nar/gkp926
- Hussain SP, and Harris CC (2007). Inflammation and cancer: an ancient link with novel potentials. Int J Cancer, 121, 2373-80. https://doi.org/10.1002/ijc.23173
- Iuliano R, Vismara MF, Dattilo V, et al (2013). The role of microRNAs in cancer susceptibility. Biomed Res Int, 2013, 591931.
- Kertesz M, Iovino N, Unnerstall U, et al (2007). The role of site accessibility in microRNA target recognition. Nat Genet, 39, 1278-84. https://doi.org/10.1038/ng2135
- Konturek PC, Konturek SJ, and Brzozowski T (2009). Helicobacter pylori infection in gastric cancerogenesis. J Physiol Pharmacol, 60, 3-21.
- Kumar A, Wong AK, Tizard ML, et al (2012). miRNA_Targets: a database for miRNA target predictions in coding and noncoding regions of mRNAs. Genomics, 100, 352-6. https://doi.org/10.1016/j.ygeno.2012.08.006
- Landi D, Barale R, Gemignani F, and Landi S (2011). Prediction of the biological effect of polymorphisms within microRNA binding sites. Methods Mol Biol, 676, 197-210. https://doi.org/10.1007/978-1-60761-863-8_14
- Lewis BP, Shih IH, Jones-Rhoades MW, et al (2003). Prediction of mammalian microRNA targets. Cell, 115, 787-98. https://doi.org/10.1016/S0092-8674(03)01018-3
- Lheureux S, Lambert B, Krieger S, et al (2011). Two novel variants in the 3'UTR of the BRCA1 gene in familial breast and/or ovarian cancer. Breast Cancer Res Treat, 125, 885-91. https://doi.org/10.1007/s10549-010-1165-8
- Lipchina I, Elkabetz Y, Hafner M, et al (2011). Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. Genes Dev, 25, 2173-86. https://doi.org/10.1101/gad.17221311
- Nicoloso MS, Sun H, Spizzo R, et al (2010). Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res, 70, 2789-98. https://doi.org/10.1158/0008-5472.CAN-09-3541
- Ross KE, Arighi CN, Ren J, et al (2013). Construction of protein phosphorylation networks by data mining, text mining and ontology integration: analysis of the spindle checkpoint. Database (Oxford), 2013, bat038.
- Ryan BM, Robles AI, and Harris CC (2010). Genetic variation in microRNA networks: the implications for cancer research. Nat Rev Cancer, 10, 389-402. https://doi.org/10.1038/nrc2867
- Satoh J (2012). Molecular network analysis of human microRNA targetome: from cancers to Alzheimer's disease. BioData Min, 5, 17. https://doi.org/10.1186/1756-0381-5-17
- Schetter AJ, Heegaard NH, and Harris CC (2010). Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis, 31, 37-49. https://doi.org/10.1093/carcin/bgp272
- Shiotani A, Uedo N, Iishi H, et al (2012). H. pylori eradication did not improve dysregulation of specific oncogenic miRNAs in intestinal metaplastic glands. J Gastroenterol, 47, 988-98. https://doi.org/10.1007/s00535-012-0562-7
- Skeeles LE, Fleming JL, Mahler KL, and Toland AE (2013). The impact of 3'UTR variants on differential expression of candidate cancer susceptibility genes. PLoS One, 8, e58609. https://doi.org/10.1371/journal.pone.0058609
- Song H, Wang Q, Guo Y, et al (2013). Microarray analysis of microRNA expression in peripheral blood mononuclear cells of critically ill patients with influenza A (H1N1). BMC Infect Dis, 13, 257. https://doi.org/10.1186/1471-2334-13-257
- Spinelli L, Gambette P, Chapple CE, et al (2013). Clust&See: a Cytoscape plugin for the identification, visualization and manipulation of network clusters. Biosystems, 113, 91-5. https://doi.org/10.1016/j.biosystems.2013.05.010
- Wang G, van der Walt JM, Mayhew G, et al (2008). Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet, 82, 283-9. https://doi.org/10.1016/j.ajhg.2007.09.021
- Wang L, Liu W, Jiang W, et al (2012). A miRNA binding site single-nucleotide polymorphism in the 3'-UTR region of the IL23R gene is associated with breast cancer. PLoS One, 7, e49823. https://doi.org/10.1371/journal.pone.0049823
- Wu J, Liu X, and Wang Y (2013). Predictive value of preoperative serum CCL2, CCL18, and VEGF for the patients with gastric cancer. BMC Clin Pathol, 13, 15. https://doi.org/10.1186/1472-6890-13-15
- Wu Q, Jin H, Yang Z, et al (2010). MiR-150 promotes gastric cancer proliferation by negatively regulating the proapoptotic gene EGR2. Biochem Biophys Res Commun, 392, 340-5. https://doi.org/10.1016/j.bbrc.2009.12.182
- Zabaleta J (2012). MicroRNA: A Bridge from H. pylori Infection to Gastritis and Gastric Cancer Development. Front Genet, 3, 294.
- Ziebarth JD, Bhattacharya A, Chen A, and Cui Y (2012). PolymiRTS Database 2.0: linking polymorphisms in microRNA target sites with human diseases and complex traits. Nucleic Acids Res, 40, D216-21. https://doi.org/10.1093/nar/gkr1026
피인용 문헌
- Genotype CC of rs1800947 in the C-Reactive Protein Gene May Increase Susceptibility to Colorectal Cancer: a Meta-Analysis vol.15, pp.6, 2014, https://doi.org/10.7314/APJCP.2014.15.6.2663
- Inferring Single Nucleotide Polymorphisms in MicroRNA Binding Sites of Lung Cancer-related Inflammatory Genes vol.15, pp.8, 2014, https://doi.org/10.7314/APJCP.2014.15.8.3601
- In silico docking of methyl isocyanate (MIC) and its hydrolytic product (1, 3-dimethylurea) shows significant interaction with DNA Methyltransferase 1 suggests cancer risk in Bhopal-Gas-Tragedy survivors vol.16, pp.17, 2015, https://doi.org/10.7314/APJCP.2015.16.17.7663
- MicroRNAs Classify Different Disease Behavior Phenotypes of Crohnʼs Disease and May Have Prognostic Utility vol.21, pp.9, 2015, https://doi.org/10.1097/MIB.0000000000000478
- Let-7b inhibits cell proliferation, migration, and invasion through targeting Cthrc1 in gastric cancer vol.36, pp.5, 2015, https://doi.org/10.1007/s13277-014-2950-5
- MicroRNA in aquaculture fishes: a way forward with high-throughput sequencing and a computational approach vol.26, pp.2, 2016, https://doi.org/10.1007/s11160-016-9421-6
- In silico dissection of miRNA targetome polymorphisms and their role in regulating miRNA-mediated gene expression in esophageal cancer vol.74, pp.4, 2016, https://doi.org/10.1007/s12013-016-0754-5
- Associations of Il-1 Family-Related Polymorphisms With Gastric Cancer Risk and the Role of Mir-197 In Il-1f5 Expression vol.94, pp.47, 2015, https://doi.org/10.1097/MD.0000000000001982