DOI QR코드

DOI QR Code

양자화학계산을 이용한 Si-O 결합길이가 MgSiO3 페로브스카이트의 X-선 Raman 산란 스펙트럼에 미치는 영향에 대한 연구

Quantum Chemical Calculations of the Effect of Si-O Bond Length on X-ray Raman Scattering Features for MgSiO3 Perovskite

  • 이유수 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Yi, Yoo Soo (Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung Keun (Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University)
  • 투고 : 2014.01.21
  • 심사 : 2014.03.07
  • 발행 : 2014.03.31

초록

지구시스템 이해에 중요한 지구 내부 맨틀 물질의 거시적인 성질을 이해하기 위해서는 고압상태의 Mg-규산염 결정질 및 비정질 물질에 대한 원자구조와 그에 수반하는 전자구조에 대한 이해가 필요하다. 근래에 in-situ 고압 실험의 어려움을 피하여 고압환경에 존재하는 지구물질의 원자구조와 그 전자구조를 규명하기 위한 방법론으로서 밀도 범함수 이론에 기반을 둔 양자화학계산이 많이 이용되고 있다. 본 연구에서는 FP-LAPW (full-potential linearized augmented plane wave) 방법론을 이용하는 WIEN2k 프로그램을 통하여 25 GPa와 120 GPa의 $MgSiO_3$ 페로브스카이트(Pv)의 전자 오비탈의 PDOS (partial density of states)와 O원자 K-전자껍질 ELNES (energy-loss near-edge structure) 스펙트럼을 계산하였다. 두 압력 조건의 $MgSiO_3$ Pv에 대하여 계산된 전자 오비탈의 PDOS와 O원자 K-전자껍질 ELNES 스펙트럼은 뚜렷한 차이를 보이고 있었다. 이와 같은 결과는 $MgSiO_3$ Pv에서 압력 증가에 의한 Si 원자 배위수의 변화가 나타나지 않더라도 Si-O 결합거리, O-O거리, Mg-O거리와 같은 O원자 주변 국소 원자구조의 변화가 O원자 주변 전자구조에 뚜렷한 영향을 미칠 수 있음을 의미한다. 본 연구의 결과는 $MgSiO_3$ 결정질 및 비정질 물질의 압력에 의한 전자구조 변화의 미시적 기원을 이해하고 더욱 나아가 다양한 지구물질의 압력에 의한 원자구조 변화와 그에 수반되는 전자구조 변화의 관계를 이해하는데 많은 도움을 줄 수 있을 것이다.

Probing the electronic structures of crystalline Mg-silicates at high pressure is essential for understanding the various macroscopic properties of mantle materials in Earth's interior. Quantum chemical calculations based on the density functional theory are used to explore the atomic configuration and electronic structures of Earth materials at high pressure. Here, we calculate the partial density of states (PDOS) and O K-edge energy-loss near-edge structure (ELNES) spectra for $MgSiO_3$ perovskite at 25 GPa and 120 GPa using the WIEN2k program based on the full-potential linearized projected augmented wave (FP-LPAW) method. The calculated PDOS and O K-edge ELNES spectra for $MgSiO_3$ Pv show significant pressure-induced changes in their characteristic spectral features and relative peak intensity. These changes in spectral features of $MgSiO_3$ Pv indicate that the pressure-induced changes in local atomic configuration around O atoms such as Si-O, O-O, and Mg-O length can induce the significant changes on the local electronic structures around O atoms. The result also indicates that the significant changes in O K-edge features can results from the topological densification at constant Si coordination number. This study can provide a unique opportunity to understand the atomistic origins of pressure-induced changes in local electronic structures of crystalline and amorphous $MgSiO_3$ at high pressure more systematically.

키워드

참고문헌

  1. Akins, J. A., Luo, S. N., Asimow, P. D., and Ahrens, T. J. (2004) Shock-induced melting of $MgSiO_3$ perovskite and implications for melts in Earth's lowermost mantle. Geophys. Res. Lett., 31, L14612. https://doi.org/10.1029/2004GL020237
  2. Alfe, D. (2007) Theory and Practice The Ab Initio Treatment of High-Pressure and-Temperature Mineral Properties and Behavior. Mineral Physics. G. D. Price, Elsevier. 6, 359-387.
  3. Anisimov, V. I., Aryasetiawan, F., and Lichtenstein, A. I. (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method. J. Phys.-Condes. Matter, 9, 767-808. https://doi.org/10.1088/0953-8984/9/4/002
  4. Becke, A. D. (1993) A New Mixing of Hartree-Fock and Local Density-Functional Theories. J. Chem. Phys., 98, 1372-1377. https://doi.org/10.1063/1.464304
  5. Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., and Luitz, J. (2001) WIEN2k (An augmented plane wave + local orbitals program for calculating crystal properties). Techn. Univ. Wien, Austria, from http://www.wien2k.at
  6. Cococcioni, M. (2010) Accurate and Efficient Calculations on Strongly Correlated Minerals with the LDA plus U Method: Review and Perspectives. Theoretical and Computational Methods in Mineral Physics: Geophysical Applications. R. Wentzcovitch and L. Stixrude. Chantilly, Mineralogical Soc Amer. 71, 147-167.
  7. de Groot, F. (2001) High resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev., 101, 1779-1808. https://doi.org/10.1021/cr9900681
  8. Dingwell, D. B. (2007) Properties of Rocks and Minerals-Diffusion, Viscosity, and Flow of Melts. Treatise on Geophysics. S. Gerald. Amsterdam, Elsevier, 419-436.
  9. Fukui, H., Kanzaki, M., Hiraoka, N., and Cai, Y. Q. (2009) X-ray Raman scattering for structural investigation of silica/silicate minerals. Phys. Chem. Miner., 36, 171-181. https://doi.org/10.1007/s00269-008-0267-x
  10. Hebert, C. (2007) Practical aspects of running the WIEN2k code for electron spectroscopy. Micron, 38, 12-28. https://doi.org/10.1016/j.micron.2006.03.010
  11. Hebert, C., Luitz, J. and Schattschneider, P. (2003) Improvement of energy loss near edge structure calculation using Wien2k. Micron, 34, 219-225. https://doi.org/10.1016/S0968-4328(03)00030-1
  12. Hemley, Russell J., Mao, Ho-Kwang, and Cohen, Ronald E. (1998) High-pressure electronic and magnetic properties. Reviews in Mineralogy and Geochemistry. 37, 591-638.
  13. Iitaka, T., Hirose, K., Kawamura, K., and Murakami, M. (2004) The elasticity of the $MgSiO_{3}$ post-perovskite phase in the Earth's lowermost mantle. Nature, 430, 442-445. https://doi.org/10.1038/nature02702
  14. Irifune, T. and Tsuchiya, T. (2007) Mineralogy of the Earth Phase Transitions and Mineralogy of the Lower Mantle. Mineral Physics. G. D. Price, Elsevier. 2, 33-62.
  15. Jorissen, K. and Rehr, J. J. (2010) Calculations of electron energy loss and x-ray absorption spectra in periodic systems without a supercell. Phys. Rev. B, 81, 245124. https://doi.org/10.1103/PhysRevB.81.245124
  16. Kim, E. J. and Lee, S. K. (2011) Atomic structure of dissolved carbon in enstatite: Raman spectroscopy and quantum chemical calculations of NMR chemical shift. J. Miner. Soc. Korea, 24, 289-300. https://doi.org/10.9727/jmsk.2011.24.4.289
  17. Kohlstedt, D. L. (2007) Properties of Rocks and Minerals Constitutive Equations, Rheological Behavior, and Viscosity of Rocks. Mineral Physics. G. D. Price, Elsevier. 6, 389-436.
  18. Lee, B. H. and Lee, S. K. (2007) The effect of lattice topology on benzyl alcohol adsorption on kaolinite surfaces: Quantum chemical calculations of Mulliken charges and magenetic shielding tensor. J. Miner. Soc. Korea, 20, 313-325.
  19. Lee, S. K. (2011) Simplicity in melt densification in multicomponent magmatic reservoirs in Earth's interior revealed by multinuclear magnetic resonance. Proc. Natl. Acad. Sci. U.S.A., 108, 6847-6852. https://doi.org/10.1073/pnas.1019634108
  20. Lee, S. K., Lin, J. F., Cai, Y. Q., Hiraoka, N., Eng, P. J., Okuchi, T., Mao, H. K., Meng, Y., Hu, M. Y., Chow, P., Shu, J. F., Li, B. S., Fukui, H., Lee, B. H., Kim, H. N., and Yoo, C. S. (2008) X-ray Raman scattering study of MgSiO3 glass at high pressure: Implication for triclustered $MgSiO_3$ melt in Earth's mantle. Proc. Natl. Acad. Sci. U.S.A., 105, 7925- 7929. https://doi.org/10.1073/pnas.0802667105
  21. Lin, J. F., Fukui, H., Prendergast, D., Okuchi, T., Cai, Y. Q., Hiraoka, N., Yoo, C. S., Trave, A., Eng, P., Hu, M. Y., and Chow, P. (2007) Electronic bonding transition in compressed SiO2 glass. Phys. Rev. B, 75.
  22. Luitz, J., Maier, M., Hebert, C., Schattschneider, P., Blaha, P., Schwarz, K., and Jouffrey, B. (2001) Partial core hole screening in the Cu L3-edge. Eur. Phys. J. B, 21, 363-367. https://doi.org/10.1007/s100510170179
  23. Mao, W. L., Mao, H. K., Sturhahn, W., Zhao, J. Y., Prakapenka, V. B., Meng, Y., Shu, J. F., Fei, Y. W., and Hemley, R. J. (2006) Iron-rich post-perovskite and the origin of ultralow-velocity zones. Science, 312, 564-565. https://doi.org/10.1126/science.1123442
  24. Marx, D., Hutter, J. (2000) Ab initio Molecular Dynamics: Theory and Implementation. Mod. Methods and Algorithms of Quantum Chem., 1, 301-449.
  25. McMillan, P. F. (2007) Theory and Practice Lattice Vibrations and Spectroscopy of Mantle Phases. Mineral Physics. G. D. Price, Elsevier. 6, 153-196.
  26. Milman, V., Refson, K., Clark, S. J., Pickard, C. J., Yates, J. R., Gao, S. P., Hasnip, P. J., Probert, M. I. J., Perlov, A., and Segall, M. D. (2010) Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation. Theochem-J. Mol. Struct., 954, 22-35. https://doi.org/10.1016/j.theochem.2009.12.040
  27. Mizoguchi, T., Tanaka, I., Yoshiya, M., Oba, F., and Adachi, H. (1999) Theoretical calculation of oxygen K electron-energy-loss near-edge structures of Sidoped MgO. J. Phys.-Condes. Matter, 11, 5661-5670. https://doi.org/10.1088/0953-8984/11/29/313
  28. Mizoguchi, Teruyasu, Tanaka, Isao, Yoshiya, Masato, Oba, Fumiyasu, Ogasawara, Kazuyoshi, and Adachi, Hirohiko (2000) Core-hole effects on theoretical electron-energy-loss near-edge structure and nearedge x-ray absorption fine structure of MgO. Phys. Rev. B, 61, 2180-2187. https://doi.org/10.1103/PhysRevB.61.2180
  29. Momma, K. and Izumi, F. (2011) VESTA 3 for threedimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr., 44, 1272-1276. https://doi.org/10.1107/S0021889811038970
  30. Mosenfelder, J. L., Asimow, P. D., Frost, D. J., Rubie, D. C., and Ahrens, T. J. (2009) The $MgSiO_3$ system at high pressure: Thermodynamic properties of perovskite, postperovskite, and melt from global inversion of shock and static compression data. J. Geophys. Res.-Solid Earth, 114.
  31. Oganov, A. R. (2007) Theory and Practice Thermodynamics, Equations of State, Elasticity, and Phase Transitions of Minerals at High Pressures and Temperatures. Mineral Physics. G. D. Price, Elsevier. 6, 122-151.
  32. Pastore, G., Smargiassi, E., and Buda, F. (1991) Theory of ab initio molecular-dynamics calculations. 44, 6334-6347. https://doi.org/10.1103/PhysRevA.44.6334
  33. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A., and Joannopoulos, J. D. (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64, 1045-1096. https://doi.org/10.1103/RevModPhys.64.1045
  34. Perdew, J. P., Burke, K., and Ernzerhof, M. (1996) Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  35. Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X. L., and Burke, K. (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett., 100, 136406. https://doi.org/10.1103/PhysRevLett.100.136406
  36. Pickard, C. J. and Mauri, F. (2001) All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B, 63, 245101. https://doi.org/10.1103/PhysRevB.63.245101
  37. Price, G. David (2007) Mineral physics. Treatise on geophysics. Amsterdam, Elsevier.
  38. Rez, P., Alvarez, J. R., and Pickard, C. (1999) Calculation of near edge structure. Ultramicroscopy, 78, 175-183. https://doi.org/10.1016/S0304-3991(99)00030-3
  39. Schwarz, K. and Blaha, P. (2003) Solid state calculations using WIEN2k. 28, 259-273. https://doi.org/10.1016/S0927-0256(03)00112-5
  40. Schwarz, K., Blaha, P., and Madsen, G. K. H. (2002) Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun., 147, 71-76. https://doi.org/10.1016/S0010-4655(02)00206-0
  41. Shim, S. H. (2008) The postperovskite transition. Annu. Rev. Earth Planet. Sci., 36, 569-599. https://doi.org/10.1146/annurev.earth.36.031207.124309
  42. Singh, David J. and Nordstrom, Lars (2006) Planewaves, pseudopotentials, and the LAPW method. Springer, New York, 134p.
  43. Stixrude, L. (2007) Properties of Rocks and Minerals- Seismic Properties of Rocks and Minerals, and Structure of the Earth. Treatise on Geophysics. S. Gerald. Amsterdam, Elsevier, 7-32.
  44. Stixrude, L. (2007) Properties of Rocks and Minerals Seismic Properties of Rocks and Minerals, and Structure of the Earth. Mineral Physics. G. D. Price, Elsevier. 2, 7-31.
  45. Stixrude, L. and Karki, B. (2005) Structure and freezing of $MgSiO_3$ liquid in Earth's lower mantle. Science, 310, 297-299. https://doi.org/10.1126/science.1116952
  46. Sugahara, M., Yoshiasa, A., Komatsu, Y., Yamanaka, T., Bolfan-Casanova, N., Nakatsuka, A., Sasaki, S., and Tanaka, M. (2006) Reinvestigation of the $MgSiO_3$ perovskite structure at high pressure. Am. Miner., 91, 533-536. https://doi.org/10.2138/am.2006.1980
  47. Tackley, P. J. (2007) Mantle Geochemical Geodynamics. Treatise on Geophysics. S. Gerald. Amsterdam, Elsevier, 437-505.
  48. Tse, John S. (2002) Ab Initio Molecular Dynamics With Density Functional Theory. Annu. Rev. Phys. Chem., 53, 249-290. https://doi.org/10.1146/annurev.physchem.53.090401.105737
  49. Wu, M., Liang, Y. F., Jiang, J. Z., and Tse, J. S. (2012) Structure and Properties of Dense Silica Glass. Sci Rep, 2, 398. https://doi.org/10.1038/srep00398
  50. Xu, Wenbo, Lithgow-Bertelloni, Carolina, Stixrude, Lars, and Ritsema, Jeroen (2008) The effect of bulk composition and temperature on mantle seismic structure. Earth Planet Sc. Lett., 275, 70-79. https://doi.org/10.1016/j.epsl.2008.08.012
  51. Yi, Y. S. and Lee, S. K. (2010) Local Electronic Structures of SiO2 Polymorph Crystals: Insights from O K-edge Energy-Loss Near-Edge Spectro- scopy. J. Miner. Soc. Korea, 23, 403-411.
  52. Yi, Y. S. and Lee, S. K. (2012) Pressure-induced changes in local electronic structures of $SiO_2$ and $MgSiO_3$ polymorphs: Insights from ab initio calculations of O K-edge energy-loss near-edge structure spectroscopy. Am. Miner., 97, 897-909. https://doi.org/10.2138/am.2012.3943
  53. Zhao, Y. and Truhlar, D. G. (2006) Density functional transfer states, and better performance on average than B3LYP for ground states. J. Phys. Chem. A, 110, 13126-13130. https://doi.org/10.1021/jp066479k

피인용 문헌

  1. A Molecular Dynamics Simulation Study of Hydroxyls in Dioctahedral Phyllosilicates vol.29, pp.4, 2016, https://doi.org/10.9727/jmsk.2016.29.4.209
  2. 소성처리에 의한 황토의 물성특성 변화 및 용존 중금속 제거능력 vol.18, pp.4, 2014, https://doi.org/10.5762/kais.2017.18.4.584
  3. 전자-정공 효과(Core-Hole Effect) 적용에 따른 SiO2 고압상들의 전자구조 및 O K-edge X-선 Raman 산란 스펙트럼 계산 결과 분석 vol.30, pp.2, 2014, https://doi.org/10.9727/jmsk.2017.30.2.59