DOI QR코드

DOI QR Code

Isolation and Characterization of Nicotine-Degrading Bacterium Arthrobacter sp. NU11 and NU15

니코틴 분해세균 Arthrobacter sp. NU11과 NU15의 분리 및 특성

  • Jeong, Yeonju (Department of Microbiology, Chungbuk National University) ;
  • Oh, Ji-Sung (Department of Microbiology, Chungbuk National University) ;
  • Roh, Dong-Hyun (Department of Microbiology, Chungbuk National University)
  • 정연주 (충북대학교 자연과학대학 미생물학과) ;
  • 오지성 (충북대학교 자연과학대학 미생물학과) ;
  • 노동현 (충북대학교 자연과학대학 미생물학과)
  • Received : 2014.02.05
  • Accepted : 2014.03.13
  • Published : 2014.03.31

Abstract

Minimal broth containing nicotine as a sole carbon source (MB/N) was used to isolate novel nicotine-degrading bacterial strains from tobacco plants and field soils. Comparative analysis of 16S rRNA gene sequence, phenotypic test and morphological tests showed that the position of these isolates were in the genus Arthrobacter of the family Micrococcaceae. The highest 16S rRNA gene sequence similarity of the isolate NU11 and NU15 to type strains in the genus Arthrobacter were Arthrobacter equi (98.2%) which was presumably a novel strain and Arthrobacter nicotinovorans (99.8%), respectively. Both strain NU11 and NU15 showed rod shaped, Gram-positive characteristics and catalase activity, but did not show oxidase activity. The novel strain NU11 was found to degrade efficiently nicotine in MB/N medium by the analysis of UV absorption spectra and could be used as an organism in bioremediation technique.

담배식물과 담배재배 토양으로부터 최소배지에 유일 탄소원으로 니코틴을 첨가한 배지(MB/N)를 이용하여 니코틴을 분해하는 새로운 균주의 분리를 시도하였다. 16S rRNA 유전자의 염기서열 분석과 표현형 시험 및 형태학적 시험으로 분리균주들은 Micrococcaceae 과의 Arthrobacter 속에 포함되는 균주로 판명되었다. NU15는 Arthrobacter nicotinovorans와 99.8%의 상동성을 보였고, NU11는 Arthrobacter equi와 98.2%의 상동성을 보여 신주일 가능성이 있었다. 두 균주 모두 양성의 간구균이며, catalase 양성, oxidase 음성이었다. 신주일 가능성이 있는 NU11균주의 니코틴 분해를 확인하기 위하여 MB/N 액체배지에서 배양하면서 니코틴 특이적으로 나타내는 260 nm에서의 흡광도가 감소를 측정한 결과, 니코틴이 균주에 의해 특이적으로 분해되는 것을 확인 할 수 있었으며, 분해균들은 니코틴 오염을 복원하는데 사용될 수 있을 것으로 생각된다.

Keywords

References

  1. Andersen, R.A., Fleming, P.D., Burton, H.R., Hamilton-Kemp, T.R., and Sutton, T.G. 1991. Nitrosated, acylated, and oxidized pyridine alkaloids during storage of smokeless tobaccos: Effects of moisture, temperature, and their interactions 1. J. Agric. Food Chem. 39, 1280-1287. https://doi.org/10.1021/jf00007a017
  2. Armstrong, D.W., Wang, X., and Ercal, N. 1998. Enantiomeric composition of nicotine in smokeless tobacco, medicinal products and commercial reagents. Chiriality 10, 587-591. https://doi.org/10.1002/(SICI)1520-636X(1998)10:7<587::AID-CHIR6>3.0.CO;2-#
  3. Brandsch, R. 2006. Microbiology and biochemistry of nicotine degradation. Appl. Microbiol. Biotechnol. 69, 493-498. https://doi.org/10.1007/s00253-005-0226-0
  4. Chen, C., Li, X., Yang, J., Gong, X., Li, B., and Zhang, K.Q. 2008. Isolation of nicotine-degrading bacterium Pseudomonas sp. Nic22, and its potential application in tobacco processing. Int. Biodet. Biodegr. 62, 226-231. https://doi.org/10.1016/j.ibiod.2008.01.012
  5. Conn, H.J. and Dimmick, I. 1947. Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J. Bacteriol. 54, 291-303.
  6. Croteau, R., Kutchan, T.M., and Lewis, N.G. 2000. Natural products (Secondary metabolites), pp. 1250-1318. In Buchannan, B.B., Gruissem, W., and Jones, R.L. (eds), Biochemistry & Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, USA.
  7. Giovannozzi-Sermanni, G. 1959. Arthrobacter nicotianae, a new type of Arthrobacter causing nicotine degradation. Coersta 3, 2595.
  8. Gong, X.W., Yang, J.K., Duan, Y.Q., Dong, J.Y., Zhe, W., Wang, L., Li, Q.H., and Zhang, K.Q. 2009. Isolation and characterization of Rhodococcus sp. Y22 and its potential application to tobacco processing. Res. Microbiol. 160, 200-204. https://doi.org/10.1016/j.resmic.2009.02.004
  9. Jeffrey, R.N. and Eoff, W.H. 1955. Paper chromatographic method for determining alkloids in tobacco. Anal. Chem. 27, 1903-1906. https://doi.org/10.1021/ac60108a014
  10. Katoh, A., Ohii, H., Inai, K., and Hashimoto, T. 2005. Molecular regulation of nicotine biosynthesis. Plant Biotechnol. 22, 389-392. https://doi.org/10.5511/plantbiotechnology.22.389
  11. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., and et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int. J. Sys. Evol. Microbiol. 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
  12. Kodama, Y., Yamamoto, H., Amano, N., and Amachi, T. 1992. Reclassification of two strains of Arthrobacter oxydans and proposal of Arthorobacter nicotinovorans sp. nov. Int. J. Syst. Bacteriol. 42, 233-239.
  13. Kumar, S., Tamura, K., and Nei, M. 2004. MEGA3: Integrate software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5, 150-163. https://doi.org/10.1093/bib/5.2.150
  14. Mayer, B. 2014. How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century. Arch Toxicol. 88, 5-7. https://doi.org/10.1007/s00204-013-1127-0
  15. Meng, X.J., Lu, L.L., Gu, G.F., and Xiao, M. 2010. A novel pathway for nicotine degradation by Aspergillus oryzae 112822 isolated from tobacco leaves. Res. Microbiol. 161, 626-633. https://doi.org/10.1016/j.resmic.2010.05.017
  16. Novotny, T. and Zhao, F. 1999. Consumption and production waste: another externality of taboacco use. Tob. Control 8, 75-80. https://doi.org/10.1136/tc.8.1.75
  17. Okamoto, M., Kita, T., Okuda, H., Tanaka, T., and Nakashima, T. 1994. Effects of aging on acute toxicity of nicotine in rats. Pharmacol. Toxicol. 75, 1-6.
  18. Ruan, A., Min, H., Peng, X., and Huang, Z. 2005. Isolation and characterization of Pseudomonas sp. strain HF-1, capable of degrading nicotine. Res. Microbiol. 156, 700-706. https://doi.org/10.1016/j.resmic.2005.02.010
  19. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  20. Shoji, T., Yamada, Y., and Hashimoto, T. 2000. Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol. 42, 831-839.
  21. Solarino, B., Rosenbaum, F., Rießelmann, B., Buschmann, C.T., and Tsokos, M. 2010. Death due to ingestion of nicotine-containing solution: case report and review of the literature. Forensic. Sci. Int. 195, e19-e22. https://doi.org/10.1016/j.forsciint.2009.11.003
  22. Stackebrandt, E. and Ebers, J. 2006. Taxonomic parameters revisited: tarnished gold standard. Microbiol. Today 33, 152-155.
  23. Wang, S.N., Liu, Z., Tang, H.Z., Meng, J., and Xu, P. 2007. Characterization of environmentally friendly nicotine degradation by Pseudomonas putida biotype A strain S16. Microbiology 153, 1556-1565 https://doi.org/10.1099/mic.0.2006/005223-0