DOI QR코드

DOI QR Code

Heterocyclic Amines Removal by Binding Ability of Lactic Acid Bacteria Isolated from Soybean Paste

된장에서 분리된 유산균의 결합력에 의한 Heterocyclic Amines 제거

  • Lim, Sung-Mee (Department of Food Science and Nutrition, Tongmyong University)
  • 임성미 (동명대학교 식품영양학과)
  • Received : 2014.02.18
  • Accepted : 2014.03.18
  • Published : 2014.03.31

Abstract

The objective of the this study was to investigate the binding capacity and removal ability of lactic acid bacterial strains obtained from Korean soybean paste for mutagenic heterocyclic amines (HCAs) formed during cooking of protein-rich food at high temperature. Among 19 strains identified by carbohydrate fermentation and 16S rRNA sequencing, the live cell or cell-free culture supernatant of Lactobacillus acidophilus D11, Enterococcus faecium D12, Pediococcus acidilactici D19, L. acidophilus D38, Lactobacillus sakei D44, Enterococcus faecalis D66, and Lactobacillus plantarum D70 inhibited the mutagenesis caused by either 3-amino-1,4-dimethyl-5H-pyrido[4,3-b] indole (Trp-P-1) or 3-amino-1-methyl-5H-pyrido[4,3-b] indole (Trp-P-2) in Salmonella typhimurium TA98 and TA100. The bacterial cells of the isolated strains showed greater binding activity than the pure cell wall, exopolysaccharide, and pepetidoglycan. The carbohydrate moieties of the cell wall or protein molecules on the cell surface have a significant role in binding Trp-P-1 and Trp-P-2, since protease, heating, sodium metaperiodate, or acidic pH treatments significantly (P<0.05) reduced the binding efficacy of the tested bacteria. Addition of metal ions or sodium dodecyl sulfate decreased the binding ability of E. faecium D12, L. acidophilus D38, and E. faecalis D66. Therefore, the binding mechanisms of these strains may consist of ion-exchange and hydrophobic bonds. Especially, the high mutagen binding by L. acidophilus D38 and L. plantarum D70 may reduce the accumulation or absorption of Trp-P-1 and Trp-P-2 in the small intestine via increased excretion of a mutagen-bacteria complex.

단백질이 풍부한 식품을 고온 하에서 조리하는 과정 중에 주로 발생되는 돌연변이원 heterocyclic amines (HCAs)에 대한 유산균의 결합력 및 제거능을 조사하였다. 당 발효능 및 16S rRNA 염기서열 분석을 통해 동정된 19종의 유산균 중 Lactobacillus acidophilus D11, Enterococcus faecium D12, Pediococcus acidilactici D19, L. acidophilus D38, Lactobacillus sakei D44, Enterococcus faecalis D66 및 Lactobacillus plantarum D70의 세포이나 배양 상등액은 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1)과 3-amino-1-methyl-5Hpyrido[4,3-b] indole (Trp-P-2)에 의한 Salmonella typhimurium TA98 및 TA100의 돌연변이 유발을 억제할 수 있었다. HCAs에 대한 유산균 세포의 결합력은 cell wall, exopolysaccharide 및 peptidoglycan 보다 높게 나타났다. 한편, 이들의 결합력은 단백질 분해효소, 가열, sodium metaperiodate 및 산 처리에 의해 유의하게 감소되었으므로 세포벽에 존재하는 당이나 단백질 성분이 이들 HCAs을 결합시키는데 중요한 역할을 하는 것으로 확인되었다. 또한 E. faecium D12, L. acidophilus D38 및 E. faecalis D66의 결합력은 SDS나 금속이온에 의해 감소되었으므로 이들세포와 돌연변이원 사이에는 이온 결합이나 소수성 결합이 작용하는 것으로 추정되었다. 한편, HCAs 결합력이 높은 L. acidophilus D38과 L. plantarum D70은 장관 상피세포에 대한 부착력이 낮으므로 돌연변이원을 세포에 결합시켜 체외로 배출함으로써 독성물질을 제거하는데 효과적인 것으로 확인되었다.

Keywords

References

  1. Adamson, R.H., Thorgeirsson, U.P., Snyderwine, E.G., Thorgeirsson, S.S., Reeves, J., Dalgard, D.W., Takayama, S., and Sugimura, T. 1990. Carcinogenicity of 2-amino-3-methylimidazo[4,5-f] quinoline in nonhuman primates: induction of tumors in three macaques. Jpn. J. Cancer Res. 81, 10-14. https://doi.org/10.1111/j.1349-7006.1990.tb02500.x
  2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Cenci, G., Rossi, J., Trotta, F., and Caldini, G. 2002. Lactic acid bacteria isolated from dairy products inhibit genotoxic effect of 4-nitrofquinoline-1-oxide in SOS-Chromotest. System. Appl. Microbiol. 25, 483-490. https://doi.org/10.1078/07232020260517607
  4. Dipple, A. 1995. DNA adducts of chemical carcinogens. Carcinogenesis 16, 437-441. https://doi.org/10.1093/carcin/16.3.437
  5. El-Nezami, H., Kankaanpaa, P., Slaminen, S., and Ahokas, J. 1998. Physicochemical alterations enhance the ability of dairy strains of lactic acid bacteria to remove aflatoxin from contaminated media. J. Food Prot. 61, 466-468. https://doi.org/10.4315/0362-028X-61.4.466
  6. Ferguson, L.R. 1994. Antimutagens as cancer chemopreventive agents in the diet. Mutat. Res. 307, 395-410. https://doi.org/10.1016/0027-5107(94)90313-1
  7. Gaubatz, J.W. 1997. Heart damage associated with cooked meat mutagens. Nutr. Biochem. 8, 490-496. https://doi.org/10.1016/S0955-2863(97)00080-6
  8. Gopal, P.K. and Reilly, K.I. 1995. Molecular architecture of the lactococcal cell surface as it relates to important industrial properties. Int. Dairy J. 5, 1095-1110. https://doi.org/10.1016/0958-6946(95)00046-1
  9. Granato, D., perotti, F., Masserey, I., Rouvet, M., Golliard, M., Servin, A., and Brassart, D. 1999. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl. Environ. Micrbiol. 62, 1071-1077.
  10. Haskard, C.A., Binnion, C., and Ahokas, J.T. 2000. Factors affecting the sequestration of aflatoxin by Lactobacillus rhamnosus strain GG. Chem. Biol. Interact. 128, 39-49. https://doi.org/10.1016/S0009-2797(00)00186-1
  11. Haskrad, C.A., El-Nezami, H.S., Kankaanpas, P.E., Salminen, S., and Ahokas, J.T. 2001. Surface binding of aflatoxin B1 by lactic acid bacteria. Appl. Environ. Microbiol. 67, 3086-3091. https://doi.org/10.1128/AEM.67.7.3086-3091.2001
  12. Haystsu, H. and Hayatsu, T. 1993. Suppressing effect of Lactobacillus casei administration on the urinary mutagenicity arising from ingestion of fried ground beef in the human. Cancer Lett. 73, 173-179. https://doi.org/10.1016/0304-3835(93)90261-7
  13. Hosono, A., Tanabe, T., and Otani, H. 1990. Binding properties of lactic acid bacteria isolated from kefir milk with mutagenic amino acid pyrolysates. Milchwissenschaft 45, 647-651.
  14. Ito, N., Hasegawa, R., Sano, M., Tamano, S., Esumi, H., Takayama, S., and Sugimura, T. 1991. A new colon and mammary carcinogen in cooked food, 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP). Carcinogenesis 12, 1503-1506. https://doi.org/10.1093/carcin/12.8.1503
  15. Jagerstad, M., Skog, K., Grivas, S., and Olsson, K. 1991. Formation of heterocyclic amines using model systems. Mutat. Res. 259, 219-233. https://doi.org/10.1016/0165-1218(91)90119-7
  16. Kankaanpaa, P., Tuomola, E., El-Nezami, H., Ahokas, J., and Salminen, S.J. 2000. Binding of aflatoxin B1 alters the adhesion properties of Lactobacillus rhamnosus strain GG in a Caco-2 model. J. Food Prot. 63, 412-414. https://doi.org/10.4315/0362-028X-63.3.412
  17. Kato, R. and Yamazoe, Y. 1987. Metabolic activation and covalent binding to nucleic acids of carcinogenic heterocyclic amines from cooked foods and amino acid pyrolysates. Jpn. J. Cancer Res. 78, 297-311.
  18. Kim, T.W., Lee, J.H., Kim, S.E., Park, M.H., Chang, H.C., and Kim, H.Y. 2009. Analysis of microbial communities in doenjang, a Koran fermented soybean paste, using nested PCR-denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 131, 265-271. https://doi.org/10.1016/j.ijfoodmicro.2009.03.001
  19. Knasmuller, S., Steinkelner, H., Hirschl, A.M., Rabot, S., Nobis, E.C., and Kassie, F. 2001. Impact of bacteria in dairy products and of the intestinal microflora on the genotoxic and carcinogenic effects of heterocylic aromatic amines. Mutat. Res. 480-481, 129-138. https://doi.org/10.1016/S0027-5107(01)00176-2
  20. Lakhtin, V.M., Aleshkin, V.A., Lakhtin, M.V., Afanas'ev, S.S., Pospelova, V.V., and Shenderov, B.A. 2006. Lectins, adhesions, and lectin-like substances of Lactobacilli and Bifidobacteria. Vestn. Ros. Akad, Med. Nauk. 1, 28-34.
  21. Lankaputhra, W.E.V. and Shah, N.P. 1998. Antimutagenic properties of probiotic bacteria and of organic acids. Mutat. Res. 397, 169-182. https://doi.org/10.1016/S0027-5107(97)00208-X
  22. Lidbeck, A., Overvick, E., Rafter, J., Nord, C.E., and Gustfsson, J.A. 1992. Effect of Lactobacillus acidophilus supplements on mutagen excretion in faces and urine in humans. Microbiol. Ecol. Health Dis. 5, 59-62. https://doi.org/10.3109/08910609209141305
  23. Lim, S.M., Lee, G.J., Park, S.M., Ahn, D.H., and Im, D.S. 2006. Characterization of Lactobacillus cellobiosus D37 isolated from soybean paste as a probiotic with anti-cancer and antimicrobial properties. Food Sci. Biotechnol. 15, 792-798.
  24. Ljungh, A. and Wadstrom, T. 2006. Lactic acid bacteria as probiotics. Curr. Issues Intestinal Microbiol. 7, 73-90.
  25. Lo, P.R., Yu, R.C., Chou, C.C., and Huang, E.C. 2004. Determinations of the antimutagenic activities of several probiotic bifidobacteria under acidic and bile conditions against benzo[a]pyrene by a modified Ames test. Int. J. Food Microbiol. 93, 249-257. https://doi.org/10.1016/j.ijfoodmicro.2003.11.008
  26. Maron, D.M. and Ames, B.N. 1983. Revised methods for Salmonella mutagenicity test. Mutat Res. 113, 173-215. https://doi.org/10.1016/0165-1161(83)90010-9
  27. Morotomi, M. and Mutai, M. 1986. In vitro binding of potent mutagenic pyrolysates to intestinal bacteria. J. Natl. Canc. Inst. 77, 195-201.
  28. Nam, Y.D., Lee, S.Y., and Lim, S.I. 2012. Microbial community analysis of Korean soybean pastes by next-generation sequencing. Int. J. Food Microbiol. 155, 36-42. https://doi.org/10.1016/j.ijfoodmicro.2012.01.013
  29. Nowak, A. and Libudzisz, Z. 2009. Ability of probiotic Lactobacillus casei DN114001 to bind or/and metabolise heterocyclic aromatic amines in vitro. Eur. J. Nutr. 48, 419-427. https://doi.org/10.1007/s00394-009-0030-1
  30. Orrhage, K.M, Sillerstrom, E., Gustafsson, J.A., Nord, C.E., and Rafter, J. 1994. Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat. Res. 311, 239-248. https://doi.org/10.1016/0027-5107(94)90182-1
  31. Park, K.Y., Kim, S.H., and Son, T.J. 1998. Antimutagenic activities of cell wall and cytosol fractions of lactic acid bacteria isolated from kimchi. J. Food Sci. Nutr. 3, 329-333.
  32. Pizzolitto, R.P., Bueno, D.J., Armando, M.R., Cavaglieri, L., Dalcero, A.M., and Salvano, M.A. 2011. Binding of aflaton B1 to lactic acid bacteria and Saccharomyces cerevisiae in vitro: A useful model to determine the most efficient microorganisms, Aflatoxins-Biochemistry and Molecular Biology, pp. 323-346. In Guevara-Gonzalez, R.G. (eds.) In Tech China.
  33. Rajendran, R. and Ohta, Y. 1998. Binding of heterocyclic amines by lactic acid bacteria from miso, a fermented Japanese food. Can. J. Microbiol. 44, 109-115. https://doi.org/10.1139/w97-133
  34. Renner, H.W. and Munzner, R. 1991. The possible role of probiotics as dietary antimutagen. Mutat. Res. 262, 239-245. https://doi.org/10.1016/0165-7992(91)90090-Q
  35. Servin, A.L. 2003. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Clin. Gastroenterol. 17, 741-754. https://doi.org/10.1016/S1521-6918(03)00052-0
  36. Skog, K.I., Johansson, M.A., and Jagerstad, M.I. 1998. Carcinogenic heterocyclic amines in model systems and cooked foods: a review on formation, occurrence and intake. Food Chem. Toxicol. 36, 879-896. https://doi.org/10.1016/S0278-6915(98)00061-1
  37. Skog, K., Steineck, G., Augustsson, K., and Jagerstad, M. 1995. Effect of cooking temperature on the formation of heterocyclic amines in fried meat products and pan residues. Carcinogenesis 16, 861-867. https://doi.org/10.1093/carcin/16.4.861
  38. Sreekumar, O. and Hosono, A. 1998a. The heterocyclic amino binding receptors of Lactobacillus gasseri cells. Mutat. Res. 421, 65-72. https://doi.org/10.1016/S0027-5107(98)00155-9
  39. Sreekumar, O. and Hosono, A. 1998b. Antimutagenic activity and influence of physical factors in binding Lactobaccillus gasseri and Bifidobacteirum longum cells to amino acid pyrolysates. J. Dairy Sci. 81, 1508-1516. https://doi.org/10.3168/jds.S0022-0302(98)75716-9
  40. Sreekumar, O. and Hosono, A. 1998c. The antimutagenic properties of a polysaccharide produced by Bifidobacterium longum and its cultures milk against some heterocyclic amines. Can. J. Microbiol. 44, 1029-1036. https://doi.org/10.1139/cjm-44-11-1029
  41. Surono, I.S. 2004. The effect of freezing methods on binding properties towards Trp-P-1 and $\beta$-galactosidase activity of dadih lactic bacteria. J. Microbiol. Ind. 8, 8-12.
  42. Surono, I.S., Pato, U., Koesnandar, A., and Hosono, A. 2009. In vivo antimutagenicity of dadih probiotic bacteria towards Trp-P-1. Asian-Aust. J. Anim. Sci. 22, 119-123. https://doi.org/10.5713/ajas.2009.80122
  43. Takahashi, M., Toyoda, K., Aze, Y., Furuta, K., Mitsumori, K., and Hayashi, Y. 1993. The rat urinary bladder as a new target of heterocyclic amine carcinogenicity: tumor induction by 3-amino-1-methyl-5H-pyrido[4,3-b]indole acetate. Jpn. J. Cancer Res. 84, 852-858. https://doi.org/10.1111/j.1349-7006.1993.tb02057.x
  44. Tanabe, T., Suyama, K., and Hosono, A. 1994a. Effect of sodium dodecylsulfate on the binding of Lactococcus lactis spp. lactis with 3-amino-1,4,-dimethyl-5H-pyrido[4,3-b]indole. J. Dairy Res. 61, 311-315. https://doi.org/10.1017/S0022029900028338
  45. Tanabe, T., Suyama, K., and Hosono, A. 1994b. Effect of pepsin, trypsin or bile acid on the binding of tryptophan pyrolysates by Lactococcus lactis ssp. lactis T-180. Milchwissenschaft 44, 438-441.
  46. Terahara, M., Meguro, S.D., and Kaneko, T. 1998. Effects of lactic acid bacteria on binding and absorption of mutagenic heterocyclic amines. Biosci. Biotechnol. Biochem. 62, 197-200. https://doi.org/10.1271/bbb.62.197
  47. Tohda, H., Oikawa, A., Kawachi, T., and Sugimura, T. 1980. Induction of sister-chromatid exchanges by mutagens from amino acid and protein pyrolysates. Mutat. Res. 77, 65-69. https://doi.org/10.1016/0165-1218(80)90121-4
  48. Tsuda, H., Hara, K., and Miyamoto, T. 2008. Binding of mutagens to exopolysaccharide produced by Lactobacillus plantarum mutant strain 301102S. J. Dairy Sci. 91, 2960-2966. https://doi.org/10.3168/jds.2007-0538
  49. Tuomola, E.M., Ouwehand, A.C., and Salminen, S.J. 2000. Chemical, physical and enzymatic pre-treatments of probiotic lactobacilli after their adhesion to human intestinal mucus glycoproteins. Int. J. Food Microbiol. 60, 75-81. https://doi.org/10.1016/S0168-1605(00)00319-6
  50. Tuomola, E.M. and Salminen, S.J. 1998. Adhesion of some probiotic and dairy Lactobacillus strains Caco-2 cell cultures. Int. J. Food Microbiol. 41, 45-51. https://doi.org/10.1016/S0168-1605(98)00033-6
  51. Yoo, S.K., Cho, W.H., Kang, S.M., and Lee, S.H. 1999. Isolation and identification of microorganisms in Korean traditional soybean paste and soybean sauce. Kor. J. Appl. Microbiol. Biotechnol. 27, 113-117.
  52. Yoo, S.K., Kang, S.M., and Noh, Y.S. 2000. Quality properties on soy bean pastes made with microorganisms isolated from traditional soybean paste. Kor. J. Food Sci. Technol. 32, 1266-1270.
  53. Yun, S.I. 2004. The binding of Bacillus natto isolated from natto to heterocyclic pyrolysates. World J. Microbiol. Biotechnol. 20, 469-474. https://doi.org/10.1023/B:WIBI.0000040396.11236.e0
  54. Yun, S.I. 2005. Antimutagenic effect of Bacillus natto isolated from natto. Agric. Chem. Biotechnol. 48, 133-137.
  55. Zhang, X.B. and Ohta, Y. 1991. Binding of mutagens by fractions of the cell wall skeleton by lactic acid bacteria on mutagens. J. Diet. Sci. 74, 1477-1481.
  56. Zhang, X.B. and Ohta, Y. 1993. Antimutagenicity of cell fractions of microorganisms on potent mutagenic pyrolysates. Mutat. Res. 298, 247-253. https://doi.org/10.1016/0165-1218(93)90003-V
  57. Zoethendal, E.G., Akkermans, A.D.L., and de Vos, W.M. 1998. Temperature gradient gel host-specific communities of active bacteria. Appl. Environ. Microbiol. 64, 3854-3859.

Cited by

  1. Effect of green tea supplementation on probiotic potential, physico-chemical, and functional properties of yogurt vol.53, pp.2, 2017, https://doi.org/10.7845/kjm.2017.7035
  2. Quality characteristics of Cheonggukjang by mixed culture of biogenic amine producing- and degrading-bacteria vol.26, pp.5, 2014, https://doi.org/10.11002/kjfp.2019.26.5.521