DOI QR코드

DOI QR Code

Identification of Auxin from Pseudomonas sp. P7014 for the Rapid Growth of Pleurotus eryngii Mycelium

큰느타리버섯 균사체의 생육촉진을 위한 Pseudomonas sp. P7014으로부터 옥신 확인

  • Kang, Young Min (Herbal Medicine Resources Group, Herbal Medicine Research Division, Korean Institute of Oriental Medicine (KIOM)) ;
  • Cho, Kye Man (Department of Food Science, Gyeongnam National University of Science and Technology)
  • 강영민 (한국한의학연구원 한약연구본부 한약자원그룹) ;
  • 조계만 (경남과학기술대학교 식품과학부)
  • Received : 2013.10.28
  • Accepted : 2014.03.10
  • Published : 2014.03.31

Abstract

The promoting effect of Pseudomonas sp. P7014 on the mycelia growth of Pleurotus eryngii was investigated. An ethyl acetate fraction (F5) from the culture supernatant of the bacteria was confirmed to contain the growth promoting compound (GPC). The GPC was identified to be indole acetic acid (IAA) by TLC, HPLC, MS/MS, and NMR analyses. P. eryngii mycelia grew rapidly both on PDA and in PDB after the treatment of GPC. The promoting concentration of GPC was as low as 1.0 nM. Tryptophan, the aminated form of IAA, was confirmed to be the precursor of IAA. These results suggested that bacterial secreted compound was IAA and plays an important role in promoting growth of mushroom mycelia.

Pseudomonas sp. P7014 박테리아를 통한 큰느타리버섯 균사체의 생육촉진에 관한 연구가 수행되었다. 박테리아 배양액으로 부터 분리한 ethyl acetate 분획물(F5)에는 성장촉진물질(GPC)이 함유되어 있음을 확인하였다. TLC, HPLC, NMR 및 MS/MS분석법으로 확인한 바, indole acetic acid (IAA)로 확인되었다. 큰느타리버섯 균사체는 성장촉진물질(GPC)이 첨가된 PDA와 PDB 배지에서 빠른 성장을 보였다. 성장촉진물질(GPC)의 농도는 1.0 nM로 매우 낮았지만, 확인된 tryptophan은 IAA의 전구체로써 IAA가 아민화된 형태였다. 이들 결과는 박테리아에서 분비된 성장촉진물질(GPC)은 IAA이었고 큰느타리버섯 균사체의 생육촉진에 중요한 역할을 하는 것으로 확인되었다.

Keywords

References

  1. Alvarez, R., Nissen, S.J., and Sutter, E.G. 1989. Relationship between indole-3-acetic acid levels in apple (Malus pumila Mill.) rootstocks cultured in vitro and adventitious root formation in the presence of indole-3-butyric acid. Plant Physiol. 89, 439-443. https://doi.org/10.1104/pp.89.2.439
  2. Arshad, M. and Frankenberger, W.T.Jr. 1998. Plant growth regulating substances in the rhizosphere: microbial production and functions. Advan. Agron. 62, 146-151.
  3. Bano, Z. and Rajarathnnam, S. 1987. Pleurotus mushroom, part IA. Morphology, life cycle, taxonomy, breeding and cultivation. Crit. Rev. Food Sci. Nutr. 26, 157-233. https://doi.org/10.1080/10408398709527465
  4. Barazani, O. and Friedman, J. 1999. Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J. Chem. Ecol. 25, 2397-2406. https://doi.org/10.1023/A:1020890311499
  5. Barbieri, R. and Galli, E. 1993. Effect on wheat root development of inoculation with an Azospirillum brasilense mutant with altered indole-3-acetic acid production. Res. Microbiol. 144, 69-75. https://doi.org/10.1016/0923-2508(93)90216-O
  6. Beyerler, M., Michaux, P., Keel, C., and Haas, D. 1997. Effect of enhanced production of indole-3-acetic acid by the biological control agent Pseudomonas fluorescens CHA0 on plant growth, pp. 310-312. In Ogoshi, A., Kobayashi, K., Homma, Y., Kodama, F., Kondo, N., and Akino, S. (ed.), Plant growthpromoting rhizobacteria: present status and future prospects. OECD, Paris, France.
  7. Biswas, J.C., Ladha, J.K., and Dazzo, F.B. 2000. Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci. Soc. Am. J. 64, 1644-1650. https://doi.org/10.2136/sssaj2000.6451644x
  8. Cho, Y.S., Kim, J.S., Crowley, D.E., and Cho, B.G. 2003. Growth promotion of the edible fungus Pleurotus ostreatus by fluorescent pseudomonads. FEMS Microbiol. Lett. 218, 271-276. https://doi.org/10.1016/S0378-1097(02)01144-8
  9. Eckardt, N.A. 2001. New insights into auxin biosynthesis. Plant Cell. 13, 1-3. https://doi.org/10.1105/tpc.13.1.1
  10. Frankenberger, W.T. and Arshad, M.Jr. 1995. Phytohormones in soil: Microbial production and function, p. 503. Marcel Dekker Inc., NY, USA.
  11. Glick, B.R., Karaturovic, D.M., and Newell, P.C. 1995. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Microbiol. 41, 533-536. https://doi.org/10.1139/m95-070
  12. Glick, B.R. and Patten, C.L. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68, 3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  13. Grewal, S.I. and Rainey, P.B. 1991. Phenotypic variation of Pseudomonas putida and P. tolaasii affects the chemotactic response to Agaricus bisporus mycelial exudate. J. Gen. Microbiol. 137, 2761-2768. https://doi.org/10.1099/00221287-137-12-2761
  14. Kim, M.K., Math, R.K., Cho, K.M., Shin, K.J., Kim, J.O., Ryu, J.S., Lee, Y.H., and Yun, H.D. 2008. Effect of Pseudomonas sp. P7014 on the growth of edible mushroom Pleurotus eryngii in bottle culture for commercial production. Bioresour. Technol. 99, 3306-3308. https://doi.org/10.1016/j.biortech.2007.06.039
  15. Loper, J.E. and Schroth, M.N. 1986. Influence of bacterial sources of indole-3-acetic acid on root elongation of sugar beet. J. Phytopathol. 76, 386-389. https://doi.org/10.1094/Phyto-76-386
  16. Mark, S., Valentina, K., Yulia, M., Alexander, G., Andrey, P., Andrey, S., Nikolay, P., and Nina, D. 2004. Immunomodulating and anti-tumor action of extracts of several mushrooms. J. Biotechnol. 113, 77-83. https://doi.org/10.1016/j.jbiotec.2004.04.034
  17. Meuwley, P. and Pilet, P.E. 1991. Local treatment with indole-3-acetic acid induces differential growth responses in Zea mays L. roots. Planta 185, 58-64.
  18. Mukhopadhyay, R., Chatterjee, S, Chatterjee, B.P., and Guha, A.K. 2005. Enhancement of biomass production of edible mushroom Pleurotus sajor-caju grown in whey by plant growth hormones. Process Biochem. 40, 1241-1244. https://doi.org/10.1016/j.procbio.2004.05.006
  19. Obodai, M., Cleland-Okine, J., and Vowotor, K.A. 2003. Comparative study on the growth and yield of Pleurotus ostreatus mushroom on different lignocellulosic by-products. J. Ind. Microbiol. Biotechnol. 30, 146-149. https://doi.org/10.1007/s10295-002-0021-1
  20. Okon, Y. and Vanderleyden, J. 1997. Root-associated Azospirillum species can stimulate plants. ASM News 63, 366-370.
  21. Omer, Z.S., Tombolini, R., Broberg, A., and Gerhardson, B. 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul. 43, 93-96. https://doi.org/10.1023/B:GROW.0000038360.09079.ad
  22. Peck, S.C. and Kende, H. 1995. Sequential induction of the ethylene biosynthetic enzymes by indole-3-acetic acid in etiolated peas. Plant Mol. Biol. 28, 293-301. https://doi.org/10.1007/BF00020248
  23. Pilet, P.E. and Saugy, M. 1987. Effect on root growth of endogenous and applied IAA and ABA. Plant Physiol. 83, 33-38. https://doi.org/10.1104/pp.83.1.33
  24. Rahman, A., Amakawa, T., Goto, N., and Tsurumi, S. 2001. Auxin is a positive regulator for ethylene-mediated response in the growth of Arabidopsis roots. Plant Cell Physiol. 42, 301-307. https://doi.org/10.1093/pcp/pce035
  25. Sawar, M. and Kremmer, R.J. 1995. Enhanced suppression of plant growth through production of L-tryptophan compounds by deleterious rhizobacteria. Plant Soil 172, 261-269. https://doi.org/10.1007/BF00011328
  26. Silva, E.M., Machuca, A., and Milagres, A.M.F. 2005. Effect of cereal brans on Lentinula edodes growth and enzyme activities during cultivation on forestry waste. Lett. Appl. Microbiol. 40, 283-288. https://doi.org/10.1111/j.1472-765X.2005.01669.x
  27. Steenhoudt, O. and Vanderleyden, J. 2000. Azospirillum, a freeliving nitrogen fixing bacterium closely associated with grasses:genetic, biochemical and ecological aspects. FEMS Microbiol. Rev. 24, 487-506. https://doi.org/10.1111/j.1574-6976.2000.tb00552.x
  28. Tien, T.M., Gaskins, M.H., and Hubbell, D.H. 1979. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Environ. Microbiol. 37, 1016-1024.
  29. Uhart, M., Piscera, J.M., and Alberto, E. 2008. Utilization of new naturally occurring strains and supplementation to improve the biological efficiency of the edible mushroom Agrocybe cylindracea. J. Ind. Microbiol. Biotechnol. DOI 10.1007/s10295-008-0321-1.
  30. Wang, Y., Han, K.S., Wang, X.Y., Koh, Y.J., and Hur, J.S. 2009. Effect of ribitol and plant hormones on aposymbiotical growth of the lichen-forming fungi of Ramalina farinacea and Ramalina fastigiata. Mycobiology 37, 28-30. https://doi.org/10.4489/MYCO.2009.37.1.028
  31. Wang, X.Y., Li, W.X., Luo, H., Kim, J.A., Jeon, H.S., Koh, Y.J., and Hur, J.S. 2010. Plant hormones promote growth in lichen-forming fungi. Mycobiology 38, 176-179. https://doi.org/10.4489/MYCO.2010.38.3.176
  32. Wood, D.A. and Hammond, J.B.W. 1977. Ethylene production by axenic fruiting cultures of Agaricus bisporus. Appl. Environ. Microbiol. 34, 228-229.
  33. Xie, H., Pasternak, J.J., and Glick, B.R. 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr. Microbiol. 32, 67-71. https://doi.org/10.1007/s002849900012

Cited by

  1. Molecular diversity of endobacterial communities in edible part of King oyster mushroom (Pleurotus eryngii) based on 16S rRNA vol.51, pp.2, 2015, https://doi.org/10.7845/kjm.2015.4086
  2. Growing edible mushrooms: a conversation between bacteria and fungi vol.22, pp.3, 2014, https://doi.org/10.1111/1462-2920.14765
  3. Enhanced growth and yield of oyster mushroom by growth‐promoting bacteria Glutamicibacter arilaitensis MRC119 vol.61, pp.1, 2021, https://doi.org/10.1002/jobm.202000379