DOI QR코드

DOI QR Code

Developing a Cellular Automata-based Pedestrian Model Incorporating Physical Characteristics of Pedestrians

보행자의 물리적 특성을 반영한 CA기반 보행모델

  • Received : 2014.01.16
  • Accepted : 2014.04.23
  • Published : 2014.04.30

Abstract

The floor field model is the micro pedestrian model based on a cellular automata for modeling pedestrian movement in the interior space using the static and dynamic floor field. It regards a form of pedestrian as square but the actual pedestrian's shape and size are similar to ellipsoid or rectangle. Because of this, we are difficult to give a rotation effect to pedestrians and there is a limit to reflect an impact of clogging and jamming. Also, this model is not able to reflect an impact of a posture and visibility effectively in the pedestrian movement. In this study, we suggest the improved pedestrian model incorporating the actual shape and size of pedestrian. The pedestrian's shape is defined not square but rectangle which is close to the actual body size of Korean. Also, we define the model which is able to represent the impact of clogging and jamming between pedestrians by adding the pedestrian's posture. We develop the simulator for testing the suggested model and study the difference between two models by comparing a number of effects. As a result, we could confirm solving the problem with dynamic value in the existed model and reflecting the panic effect in evacuation situation.

Floor Field Model(FFM)은 실내에서 보행자의 움직임을 모델링하기 위한 CA기반 미시적 보행모델이며, static과 dynamic floor field를 이용하여 보행자의 움직임을 표현해낸다. 다만, 실제 보행자의 크기와 모양은 타원체나 직사각형과 유사한데, FFM에서는 정사각형 형태의 보행자를 설정하고 있다. 이로 인해 보행자들의 회전효과 부여에 어려움이 있으며, 보행자들끼리 발생하는 충돌, 끼임 등의 영향을 반영하기에 한계가 있다. 또한, 보행자의 자세 시야의 변경에 따른 영향들도 효과적으로 반영되고 있지 않다. 본 연구에서는 FFM이 가진 한계점을 개선하기 위해 보행자의 크기, 모양 등의 물리적 특성을 반영한 보행모델을 제시한다. 본 모델에서는 정사각형이 아닌 직사각형 형태로 보행자를 정의하며, 한국인의 실제 신체크기에 가깝도록 하였다. 또한, 보행자의 자세정보를 추가하였으며, 보행자들 간에 발생하는 충돌, 끼임 등의 영향을 반영할 수 있도록 정의하였다. 제안된 모델을 이용한 시뮬레이터를 개발하였으며, 개선된 모델과 기존 모델간의 비교 분석을 통해 차이점을 분석하였다. 이를 통해 기존 모델에서 발생하던 dynamic value 적용문제의 해결과 대피상황에서 발생하는 패닉현상의 반영을 확인할 수 있었다.

Keywords

References

  1. Ahuja, R. K; Magnate, T. L; Orlin, J. B. 1993, Book Title, Network Flows: Theory, Algorithms and Applications.
  2. Burstedde, C; Klauck, K; Schadschneider, A; Zittartz, J. 2001, Simulation of Pedestrian Dynamics using a Two-dimensional Cellular Automation, Physica A, 295:507-525. https://doi.org/10.1016/S0378-4371(01)00141-8
  3. Helbing, D. 2001, Traffic and Related Self-driven Many-particle Systems, Rev. Mod. Phys, 73: 1067-1141. https://doi.org/10.1103/RevModPhys.73.1067
  4. Helbing, D; Farkas, I; Vicsek, T. 2000, Simulating Dynamical Features of Escape Panic, Nature, 407:487-490. https://doi.org/10.1038/35035023
  5. Henein, C. M. 2008, Crowds Are Made of People: Human Factors in Microscopic Crowd Models, Ph.D. thesis, Carleton University, Canada.
  6. KATS, 2010, The Korean Human Dimensions Direct Measurement Research Project, [Online] Available: sizekorea, http://sizekorea.kats.go.kr.
  7. Kirchner, A; Klupfel, H; Nishinari, K; Schadschneider, A; Schreckenberg, M. 2004, Discretisation Effects and The Influence of Walking Speed in Cellular Automata Models for Pedestrian Dynamics, J Stat Mech 10:P10011.
  8. Kirchner, A; Nishinari, K; Schadschneider, A. 2003, Friction Effect and Clogging in a Cellular Automaton Model for Pedestrian Dynamics, Phys. Rev. E, 67, 056122. https://doi.org/10.1103/PhysRevE.67.056122
  9. Kirchner, A; Schadschneider, A. 2002, Simulation of Evacuation Processes using a Bionics-inspired Cellular Automaton Model for Pedestrian Dynamics, Physica A, 312:260-276. https://doi.org/10.1016/S0378-4371(02)00857-9
  10. Kirik, E; Yurgel'yan, T; Krouglov, D. 2007, An Intelligent Floor Field Cellular Automation Model for Pedestrian Dynamics, Proceedings of The Summer Computer Simulation Conference, The Mission Valley Marriott San Diego, California, 1031-1036.
  11. Kwak, S. Y; Nam, H. W; Jun, C. M. 2010, An Indoor Pedestrian Simulation Model Incorporating the Visibility, Journal of Korea Spatial Information Society, 18(5):133-142.
  12. Kwak, S. Y; Nam, H. W; Jun, C. M. 2012, An Optimal Model for Indoor Pedestrian Evacuation Considering the Entire Distribution of Building Pedestrians, Journal of Korea Society for Geospatial Information System, 20(2):23-29. https://doi.org/10.7319/kogsis.2012.20.2.023
  13. Lim, W. S; Ryu T. B; Choi, H. W; Choi, H. S; Chung, M. K. 2006, A Comparision of Gait Characteristics between Korean and Western Young People, Journal of the Ergonomics Society of Korea, 25(2):33-41.
  14. Nishinari, K; Kirchner, A; Namazi, A; Schadschneider, A. 2004, Extended Floor Field CA Model for Evacuation Dynamics, IEICETrans. Inf. Syst, E87-D:726-732.
  15. Yanagisawa, D; Kimura, A; Tomoeda, A; Ryosuke, N; Suma, Y; Ohtsuka, K; Nishinari, K. 2009, Introduction of Frictional and Turning Function for Pedestrian Outflow with an Obstacle, Phys. Rev. E 80, 036110. https://doi.org/10.1103/PhysRevE.80.036110