• Title/Summary/Keyword: 미시적 보행모델

Search Result 4, Processing Time 0.021 seconds

Developing a Cellular Automata-based Pedestrian Model Incorporating Physical Characteristics of Pedestrians (보행자의 물리적 특성을 반영한 CA기반 보행모델)

  • Nam, Hyunwoo;Kwak, Suyeong;Jun, Chulmin
    • Spatial Information Research
    • /
    • v.22 no.2
    • /
    • pp.53-62
    • /
    • 2014
  • The floor field model is the micro pedestrian model based on a cellular automata for modeling pedestrian movement in the interior space using the static and dynamic floor field. It regards a form of pedestrian as square but the actual pedestrian's shape and size are similar to ellipsoid or rectangle. Because of this, we are difficult to give a rotation effect to pedestrians and there is a limit to reflect an impact of clogging and jamming. Also, this model is not able to reflect an impact of a posture and visibility effectively in the pedestrian movement. In this study, we suggest the improved pedestrian model incorporating the actual shape and size of pedestrian. The pedestrian's shape is defined not square but rectangle which is close to the actual body size of Korean. Also, we define the model which is able to represent the impact of clogging and jamming between pedestrians by adding the pedestrian's posture. We develop the simulator for testing the suggested model and study the difference between two models by comparing a number of effects. As a result, we could confirm solving the problem with dynamic value in the existed model and reflecting the panic effect in evacuation situation.

A Study on Comparison of Improved Floor Field Model and Other Evacuation Models (개선된 Floor Field Model과 다른 피난시뮬레이션 모델의 비교 연구)

  • Nam, Hyunwoo;Kwak, Suyeong;Jun, Chulmin
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.41-51
    • /
    • 2016
  • In this study, we propose an improved Floor Field Model(FFM) that considers the physical characteristics of pedestrians, i.e., body size, shape, and posture. Also we analyse limits of FFM and features of improved model compared with existing evacuation simulation models. FFM is a typical microscopic pedestrian model using CA, but it does not reflect the physical characteristics of pedestrians. Because of this, FFM is difficult to modeling phenomena such as collision, friction between pedestrians. As a result, FFM calculates a very short evacuation time when compared with the other models. We performed a computational experiment to compare improved model with other models such as FFM, Simulex, Pathfinder in an actual campus building. We carried out a comparison of evacuation aspect according to the change in number of evacuees. Also we compared evacuation aspect by exit. Finally, we confirmed that improved model reflects physical phenomena which were not reflected in FFM. Especially, experimental results were very similar to the Simulex.

Microscopic Evacuation Simulation in Large-scale Buildings using EgresSIM (EgresSIM을 이용한 대형건축물의 미시적 대피시뮬레이션)

  • Kwak, Suyeong;Nam, Hyunwoo;Jun, Chulmin
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2016
  • This paper introduces 'EgresSIM', which is microscopic evacuation simulation software. EgresSIM developed in this paper is a three-dimensional (3D) pedestrian evacuation simulator based on the improved model advanced from the floor field model(FFM), a microscopic pedestrian model. This software can simulate large size buildings that consist of a number of floors, stairs, rooms, and exit doors. Moreover, this software can arrange several hundreds or thousands of pedestrians in indoor space and check their movements through the 3D viewer in real time, as well as produce detailed results about evacuation situations such as which paths are employed by individual pedestrians, how long does it takes to evacuate, and how many evacuees are gathered at each of the exit doors. Building data needed in the simulation are constructed as XML files according to pre-defined indoor data models and information of simulation results is also created as XML log files. A moving pattern of pedestrians can be represented in many ways by adjusting the sensitivity parameters of two walk models supported by EgresSIM. Thus, evacuation simulation can be done based on many assumptions of situations such as movement to the nearest exit door or blackout after outage.

A study on building evacuation simulation using Floor Field Model (Floor Field Model을 이용한 건축물의 대피시뮬레이션에 대한 연구)

  • Nam, Hyunwoo;Kwak, Suyeong;Jun, Chulmin
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.2
    • /
    • pp.1-11
    • /
    • 2016
  • The floor field model (hereafter referred to as FFM) is a cellular automata (hereafter referred to as CA)-based walk model used to model pedestrian behavior. Existing studies on FFM conducted experiments with simple structures (that have one room or one obstacle in a room) or relatively complicated structures (that have many rooms). In order to apply the FFM to real buildings, it is necessary to have additional methodologies to process information about the number of rooms, floors, stairs, and exit doors. In particular, it is necessary to process exit doors during this procedure. Exit doors that are recognized by pedestrians are of many types such as exit doors in rooms, stairs connected to corridors, and exit doors in a building. When calculating the static floor field (hereafter referred to as SFF) in the FFM, information about exit doors is needed and simulation results will be different depending on how the SFF is calculated using an exit door among the above-mentioned exit doors. In this study, an XML-format building data model is proposed according to data structures required by the FFM. This study also defines a methodology to process a number of exit doors. Accordingly, this study developed a building data construction and evacuation simulator and simulation experiments were conducted with university campus building.