DOI QR코드

DOI QR Code

복합해수유동 수치모형에 의한 조간대 연안류의 해석

Analysis of Littoral Currents by the Coupled Hydrodynamic Model

  • 이종섭 (부경대학교 토목공학과) ;
  • 권경환 (세일종합기술공사 기술연구소) ;
  • 박일흠 (전남대학교 해양기술학부)
  • Lee, Jong-Sup (Department of Civil Engineering, Pukyong National University) ;
  • Kwon, Kyong-Hwan (Port & Coastal Development Institute, Seil Engineering Co., Ltd.) ;
  • Park, Il-Heum (School of Marine Technology, Chonnam National University)
  • 투고 : 2014.03.24
  • 심사 : 2014.04.25
  • 발행 : 2014.04.30

초록

본 연구에서는 조간대가 발달한 우리나라 전북 서해안의 구시포 해안에서 연안류에 미치는 외력성분을 평가하기 위하여 조석 조류 및 파에 의한 해빈류를 고려한 복합해수유동모형을 구축하였다. 구축된 모형에서 조석 조류는 EFDC 모형, 파랑은 SWAN 모형, 그리고 해빈류는 SHORECIRC 모형을 사용하였다. 이 수치모형의 적용성을 검토하기 위하여, 현지에서 조석 조류와 입사파를 현장관측하였고 인근 기상관측소의 바람자료를 조사하였다. 그리고 현지의 조간대에서 GPS를 장착한 경량 Drogue의 추적실험을 수행하고 연안류 성분을 추출하였다. 또한 현장관측조건에 맞추어 수치모형에 의한 수치 Drogue 추적실험을 수행하고 그 결과를 관측치와 비교 검토하였다. 그 결과, 수치 Drogue의 이동속도는 현장자료에 대해 68.0~105.2 %의 범위로서 재현되었으며, 주류성분의 오차는 - 16.7~ +10.0 %로서 양호하였다. 그리고 연안류 성분은 주로 바람과 조류가 큰 영향을 미치는 것으로 나타났으며, 해저경사가 아주 완만하여 쇄파대폭이 넓은 조간대에서 입사파고가 작은 파가 내습하는 경우의 해빈류는 연안류의 흐름에 미치는 영향이 미약한 것으로 분석되었다.

To evaluate the influence of the external force components on the littoral currents in the Gusipo beach, Jeonbuk, West Coast of Korea where a wide tidal sand flat developed, a coupled hydrodynamic model considered real time tidal currents and wave-induced currents was constructed in which the EFDC for tides and tidal currents, the SWAN for waves and the SHORECIRC for wave-induced currents were used as the hindcasting models. A series of field observations for tides, tidal currents and incident waves were carried out and especially to observe the littoral currents in the tidal sand flat, the GPS mounted and light weight drogues were used. Also wind data were collected from the adjacent weather station. To analyze the littoral current components, the numerical drogue tracking results considered real time winds, tides and waves were compared with the field drogue data. The drift speed of numerical drogues was reproduced as the range of 68.0~105.2% compared with the field data and the velocity error of main direction component showed a good result as -16.7~10.0%. As a result, in the mild slope tidal flat including wide surf zone, the tides and winds were the major affection component of the littoral currents, on the other hand, the wave-induced currents seemed the minor component when the incident wave heights were relatively small.

키워드

참고문헌

  1. Battjes, J. A.(1975), Modeling of Turbulence in the Surf Zone, ASCE Proc. Symp. on Modelling Techniques, San Fracisco, pp. 1050-1061.
  2. Booij, N., L. H. Holthuijsen and R. C. Ris(1996), The SWAN wave model for shallow water, Proc. 25th Int. Conf. Coastal Engng., Orlando, USA, Vol. 1, pp. 668-676.
  3. Cheon, S. H. and K. D. Suh(2013), Change of Nearshore Random Waves in Response to Sea-level Rise, J. of KSCOE, Vol. 25, No. 4, pp. 244-254. https://doi.org/10.9765/KSCOE.2013.25.4.244
  4. Coffey, F. C. and P. Nielsen(1984), Aspects of Wave Current Boundary Layer Flows, In Proc., 19th ICCE, ASCE, pp. 2232-2245.
  5. Flather, R. A. and N. S. Heaps(1975), Tidal Computations for Morecambe Bay, J. of Geophy, J. R. Astro Soc., Vol. 42, pp. 489-517.
  6. Falconer, R. A.(1984), Temperature Distributions in Tidal Flow Field, J. of Env. Eng., Vol. 110, pp. 1099-1177. https://doi.org/10.1061/(ASCE)0733-9372(1984)110:6(1099)
  7. FISI CNU(2012), The Final Report on the Damage Investigation for the Decrease Facilities of Thermal Effluent Diffusion in the Gusipo Beach, p. 1031.
  8. Hamrick, J. M.(1992), A Three-Dimensional Environmental Fluid Dynamics Computer Code: Theoretical and Computational Aspects. Special Report No. 317 in Applied Marine Science and Ocean Engineering, Virginia Institute of Marine Science, Gloucester Point, VA. p. 64.
  9. Hamrick, J. M.(1994), Linking Hydrodynamic and Biogeochemical Transport Models for Estuarine and Coastal Waters, Estuarine and Coastal Modeling, Proc. of the 3rd Inter. Conf., M. L. Spaulding et al., Eds., ASCE, New York, pp. 591-608.
  10. Kaihatu, J. M., F. Shi, J. T. Kirby and I. A. Svendsen(2002), Incorporation of Random Wave Effects into a Quasi 3D Nearshore Circulation Model, Proc. of the 28th ICCE, pp. 1-13.
  11. Lee, J. S. and H. J. Kim(1995), Sensitivity Analysis of Diffusion Solutions by Ransom Walk Method, J. of KSCE, Vol. 15, No. 5, pp. 1267-1277.
  12. Lee, Y. K., I. H. Park and J. S. Lee(2005), A 2-D Numerical Model of Longshore Currents due to Irregular Waves, Proc. of the 3rd Inter. Conf. of APAC, pp. 223-226.
  13. Mei, C. C.(1983), The Applied Dynamics of Ocean Surface Waves, Hohn Wiely & Sons, Inc., p. 740.
  14. Mellor, G. L. and T. Yamada(1982), Development of a Turbulence Closure Model for Geophysical Fluid Problems, Reviews of Geophysics and Space Physics, Vol. 20, No. 4, pp. 851-875. https://doi.org/10.1029/RG020i004p00851
  15. Phillips, O. M.(1966), The Dynamics of the Upper Ocean, Cambridge University Press, Cambridge. p. 261.
  16. Phillips, O. M.(1977), The Dynamics of the Upper Ocean (2nd Ed.), Cambridge University Press, Cambridge. p. 336.
  17. Smagorinsky, J.(1963), General Circulation Experiments with the Primitive Equation, I. the Basic Experiment, Monthly Weather Review, Vol. 91, pp. 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  18. Svendsen, I. A., K. Haas and Q. Zhao(2004), Quasi-3D Nearshore Circulation Model SHORECIRC: Version 2.0, Research Report, Center for Applied Coastal Research, University of Delaware. p. 64.
  19. Svendsen, I. A. and U. Putrevu(1994), Nearshore Mixing and Dispersion. Proc. Roy. Soc. Lond, A, Vol. 445, pp. 561-576.
  20. Tetra Tech(2007), The Environmental Fluid Dynamics Code, User Manual, US EPA Version 1.01, p. 231.
  21. The SWAN Team(2013), User Manual SWAN Cycle III version 40.91ABC, Environmental Fluid Mechanics Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands, Retrieved from http://swanmodel.sourceforge.net/.
  22. van Dongeren, A. R., F. Sancho, I. A. Svendsen and U. Putrevu(1994). SHORECIRC: A Quasi 3D Nearshore Model, Proc. of the 24th ICCE, pp. 2741-2754.
  23. Wei, G. and J. T. Kirby(1995), A time Dependent Numerical Code for Extended Boussinesq Equations, J. Waterway, Port, Coastal and Ocean Eng., Vol. 120, pp. 251-261.

피인용 문헌

  1. Predicting Long-Term Shoreline Change Due to the Construction of Submerged Breakwaters in Manseongri Beach vol.22, pp.5, 2016, https://doi.org/10.7837/kosomes.2016.22.5.527
  2. Device Development for Longshore Current Measurement and Model Test vol.23, pp.11, 2014, https://doi.org/10.5322/JESI.2014.23.11.1801
  3. Estimation on Average Residence Time of Particulate Matters in Geoje Bay using Particle Tracking Model vol.22, pp.1, 2016, https://doi.org/10.7837/kosomes.2016.22.1.020
  4. 고해상도 해양순환모델을 활용한 제주도 주변해역의 해수유동 특성 vol.42, pp.3, 2020, https://doi.org/10.4217/opr.2020.42.3.211