참고문헌
- Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237-240. https://doi.org/10.1126/science.281.5374.237
- Grachev, M. A., V. V. Annenkov, and Y. V. Likhoshway (2008) Silicon nanotechnologies of pigmented heterokonts. BioEssays: news and reviews in molecular, cellular and developmental biology, 30: 328-337. https://doi.org/10.1002/bies.20731
- Round, F. E. (1990) Diatom Communities - Their Response to Changes in Acidity. Philos. T Roy. Soc. B, 327: 243-249. https://doi.org/10.1098/rstb.1990.0059
- Alverson, A. J., J. J. Cannone, R. R. Gutell, and E. C. Theriot (2006) The evolution of elongate shape in diatoms. J. Phycol. 42: 655-668. https://doi.org/10.1111/j.1529-8817.2006.00228.x
- Treguer, P., D. M. Nelson, A. J. Vanbennekom, D. J. Demaster, A. Leynaert, and B. Queguiner (1995) The silica balance in the world Ocean - a Reestimate. Science 268: 375-379. https://doi.org/10.1126/science.268.5209.375
- Hildebrand, M., B. E. Volcani, W. Gassmann, and J. I. Schroeder (1997) A gene family of silicon transporters. Nature 385: 688-689.
- Drum, R. W. and H. S. Pankratz (1964) Post mitotic fine structure of Gomphonema Parvulum. J. Ultra Mol. Struct. R, 10: 217-223. https://doi.org/10.1016/S0022-5320(64)80006-X
- Parkinson, J. and R. Gordon (1999) Beyond micromachining: the potential of diatoms. Trends Biotechnol. 17: 190-196. https://doi.org/10.1016/S0167-7799(99)01321-9
- Hecky, R. E., K. Mopper, P. Kilham, and E. T. Degens (1973) Amino-Acid and Sugar Composition of Diatom Cell-Walls. Mar. Biol. 19: 323-331. https://doi.org/10.1007/BF00348902
- Shimizu, K., J. Cha, G. D. Stucky, and D. E. Morse (1998) Silicatein alpha: Cathepsin L-like protein in sponge biosilica. Proceedings of the National Academy of Sciences of the United States of America, 95: 6234-6238.
- Kroger, N., C. Bergsdorf, and M. Sumper (1994) A new calciumbinding glycoprotein family constitutes a major diatom cell-wall component. Embo. J. 13: 4676-4683.
- Kroger, N., R. Deutzmann, and M. Sumper (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286: 1129-1132. https://doi.org/10.1126/science.286.5442.1129
- Sumper, M. (2004) Biomimetic patterning of silica by long-chain polyamines. Angew. Chem. Int. Edit. 43: 2251-2254. https://doi.org/10.1002/anie.200453804
- Borowitzka, M. A. (1992) Algal biotechnology products and processes - Matching science and economics. J. Appl. Phycol. 4: 267-279. https://doi.org/10.1007/BF02161212
- Dunahay, T. G., E. E. Jarvis, S. S. Dais, and P. G. Roessler (1996) Manipulation of microalgal lipid production using genetic engineering. Appl. Biochem. Biotechnol. 57-8: 223-231.
- Tonon, T., D. Harvey, T. R. Larson, and I. A. Graham (2002) Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61: 15-24. https://doi.org/10.1016/S0031-9422(02)00201-7
- Lebeau, T. and J. M. Robert (2003) Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products. Appl. Microbiol. Biot. 60: 624-632. https://doi.org/10.1007/s00253-002-1177-3
- Lebeau, T. and J. M. Robert (2003) Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various scales. Appl. Microbiol. Biot. 60: 612-623. https://doi.org/10.1007/s00253-002-1176-4
- Evenson, W. E., S. R. Rushforth, J. D. Brotherson, and N. Fungladda (1981) The effects of selected physical and chemical factors on attached diatoms in the uintah basin of Utah, USA. Hydrobiologia 83: 325-330. https://doi.org/10.1007/BF00008283
- Leterme, S. C., E. Prime, J. Mitchell, M. H. Brown, and A. V. Ellis (2013) Diatom adaptability to environmental change: A case study of two Cocconeis species from high-salinity areas. Diatom. Res. 28: 29-35. https://doi.org/10.1080/0269249X.2012.734530
- Wu, J. T. (1999) A generic index of diatom assemblages as bioindicator of pollution in the Keelung River of Taiwan. Hydrobiologia 397: 79-87. https://doi.org/10.1023/A:1003694414751
- Watanabe, T., K. Asai, and A. Houki (1986) Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage - Diatom assemblage index (Daipo). Sci. Total Environ. 55: 209-218. https://doi.org/10.1016/0048-9697(86)90180-4
- Kelly, M. G. and B. A. Whitton (1995) Trophic diatom index - A new index for monitoring eutrophication in rivers. J. Appl. Phycol. 7: 433-444. https://doi.org/10.1007/BF00003802
- Sladecek, V. (1986) Diatoms as indicators of organic pollution. Acta Hydroch. Hydrob. 14: 555-566. https://doi.org/10.1002/aheh.19860140519
- Passy, S. I. and R. W. Bode (2004) Diatom model affinity (DMA), a new index for water quality assessment. Hydrobiologia 524: 241-251. https://doi.org/10.1023/B:HYDR.0000036143.60578.e0
- Perales-Vela, H. V., J. M. Pena-Castro, and R. O. Canizares-Villanueva (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64: 1-10. https://doi.org/10.1016/j.chemosphere.2005.11.024
- Vatamaniuk, O. K., S. Mari, Y. P. Lu,. and P. A. Rea (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase - Blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J. Biol. Chem. 275: 31451-31459. https://doi.org/10.1074/jbc.M002997200
- Fehrmann, C. and P. Pohl (1993) Cadmium adsorption by the nonliving biomass of microalgae grown in axenic mass-culture. J. Appl. Phycol. 5: 555-562. https://doi.org/10.1007/BF02184634
- Parida, S. K., S. Dash, S. Patel, and B. K. Mishra (2006) Adsorption of organic molecules on silica surface. Adv. Colloid. Interfac. 121: 77-110. https://doi.org/10.1016/j.cis.2006.05.028
- Yu, Y., J. Addai-Mensah, and D. Losic (2012) Functionalized diatom silica microparticles for removal of mercury ions. Sci. Technol. Adv. Mat. 13: 015008. https://doi.org/10.1088/1468-6996/13/1/015008
- Losic, D., J. G. Mitchell, and N. H. Voelcker (2009) Diatomaceous Lessons in Nanotechnology and Advanced Materials. Adv. Mater. 21: 2947-2958. https://doi.org/10.1002/adma.200803778
- Shingubara, S. (2003) Fabrication of nanomaterials using porous alumina templates. J. Nanopart. Res. 5: 17-30. https://doi.org/10.1023/A:1024479827507
- Rosi, N. L., C. S. Thaxton, and C. A. Mirkin (2004) Control of nanoparticle assembly by using DNA-modified diatom templates. Angew. Chem. Int. Edit. 43: 5500-5503. https://doi.org/10.1002/anie.200460905
- Payne, E. K., N. L. Rosi, C. Xue, and C. A. Mirkin (2005) Sacrificial biological templates for the formation of nanostructured metallic microshells. Angew. Chem. Int. Edit. 44: 5064-5067. https://doi.org/10.1002/anie.200500988
- Jeanmaire, D. L. and R. P. Vanduyne (1977) Surface raman spectroelectrochemistry. 1. heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J. Electroanal. Chem. 84: 1-20. https://doi.org/10.1016/S0022-0728(77)80224-6
- Losic, D., J. G. Mitchell, and N. H. Voelcker (2006) Fabrication of gold nanostructures by templating from porous diatom frustules. New. J. Chem. 30: 908-914. https://doi.org/10.1039/b600073h
- Bao, Z. H., M. K. Song, S. C. Davis, Y. Cai, M. L. Liu, and K. H. Sandhage (2011) High surface area, micro/mesoporous carbon particles with selectable 3-D biogenic morphologies for tailored catalysis, filtration, or adsorption. Energ. Environ. Sci. 4: 3980-3984. https://doi.org/10.1039/c1ee02102h
- Davis, S. C., V. C. Sheppard, G. Begum, Y. Cai, Y. N. Fang, J. D. Berrigan, N. Kroger, and K. H. Sandhage (2013) Rapid flowthrough biocatalysis with high surface area, enzyme-loaded carbon and gold-bearing diatom frustule replicas. Adv. Funct. Mater. 23: 4611-4620. https://doi.org/10.1002/adfm.201203758
- Hoffmann, M. R., S. T. Martin, W. Y. Choi, and D. W. Bahnemann (1995) Environmental applications of semiconductor photocatalysis. Chem. Rev. 95: 69-96. https://doi.org/10.1021/cr00033a004
- De Stefano, L., L. Rotiroti, M. De Stefano, A. Lamberti, S. Lettieri, A. Setaro, and P. Maddalena (2009) Marine diatoms as optical biosensors. Biosens. Bioelectron. 24: 1580-1584. https://doi.org/10.1016/j.bios.2008.08.016
-
Park, K. H., H. B. Gu, E. M. Jin, and M. Dhayal (2010) Using hybrid silica-conjugated
$TiO_2$ nanostructures to enhance the efficiency of dye-sensitized solar cells. Electrochim. Acta 55: 5499-5505. https://doi.org/10.1016/j.electacta.2010.04.100 - Kanjilal, A., J. L. Hansen, P. Gaiduk, A. N. Larsen, N. Cherkashin, A. Claverie, P. Normand, E. Kapelanakis, D. Skarlatos, and E. Tsoukalas (2003) Structural and electrical properties of silicon dioxide layers with embedded germanium nanocrystals grown by molecular beam epitaxy. Appl. Phys. Lett. 82: 1212-1214. https://doi.org/10.1063/1.1555709
-
Zacharias, M. and P. M. Fauchet (1997) Blue luminescence in films containing Ge and
$GeO_2$ nanocrystals: The role of defects. Appl. Phys. Lett. 71: 380-382. https://doi.org/10.1063/1.119543 - Sandhage, K. H., M. B. Dickerson, P. M. Huseman, M. A. Caranna, J. D. Clifton, T. A. Bull, T. J. Heibel, W. R. Overton, and M. E. A. Schoenwaelder (2002) Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: Shape-preserving reactive conversion of biosilica (diatom) microshells. Adv. Mater. 14: 429-433. https://doi.org/10.1002/1521-4095(20020318)14:6<429::AID-ADMA429>3.0.CO;2-C
- Jeffryes, C., T. Gutu, J. Jiao, and G. L. Rorrer (2008) Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. Mat. Sci. Eng. C-Bio. S, 28: 107-118. https://doi.org/10.1016/j.msec.2007.01.002
- Darley, W. M. and B. E. Volcani (1969) Role of silicon in diatom metabolism. a silicon requirement for deoxyribonucleic acid synthesis in diatom cylindrotheca-fusiformis Reimann and Lewin. Exp. Cell Res. 58: 334-342. https://doi.org/10.1016/0014-4827(69)90514-X
- Mascolo, G., R. Ciannarella, L. Balest, and A. Lopez (2008) Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: A laboratory investigation. J. Hazard Mater. 152: 1138-1145. https://doi.org/10.1016/j.jhazmat.2007.07.120
-
Farooq, M., I. A. Raja, and A. Pervez (2009) Photocatalytic degradation of TCE in water using
$TiO_2$ catalyst. Sol. Energy, 83: 1527-1533. https://doi.org/10.1016/j.solener.2009.04.009 -
Jeffryes, C., T. Gutu, J. Jiao, and G. L. Rorrer (2008) Metabolic insertion of nanostructured
$TiO_2$ into the patterned biosilica of the diatom pinnularia sp by a two-stage bioreactor cultivation process. Acs. Nano. 2: 2103-2112. https://doi.org/10.1021/nn800470x -
Lang, Y., F. del Monte, B. J. Rodriguez, P. Dockery, D. P. Finn, and A. Pandit (2013) Integration of
$TiO_2$ into the diatom Thalassiosira weissflogii during frustule synthesis. Sci. Rep-Uk, 3: 3205. https://doi.org/10.1038/srep03205 - Bismuto, A., A. Setaro, P. Maddalena, L. De Stefano, and M. De Stefano (2008) Marine diatoms as optical chemical sensors: A timeresolved study. Sensor Actuat B-Chem. 130: 396-399. https://doi.org/10.1016/j.snb.2007.09.012
- Gale, D. K., T. Gutu, J. Jiao, C. H. Chang, and G. L. Rorrer (2009) Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica. Adv. Funct. Mater. 19: 926-933. https://doi.org/10.1002/adfm.200801137
- Lin, K. C., V. Kunduru, M. Bothara, K. Rege, S. Prasad, and B. L. Ramakrishna (2010) Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins. Biosens. Bioelectron. 25: 2336-2342. https://doi.org/10.1016/j.bios.2010.03.032
- Losic, D., Y. Yu, M. S. Aw, S. Simovic, B. Thierry, and J. Addai- Mensah (2010) Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies. Chem. Commun. 46: 6323-6325. https://doi.org/10.1039/c0cc01305f
- Aw, M. S., M. Bariana, Y. Yu, J. Addai-Mensah, and D. Losic (2013) Surface-functionalized diatom microcapsules for drug delivery of water-insoluble drugs. J. Biomater. Appl., 28: 163-174. https://doi.org/10.1177/0885328212441846
- Gordon, R., D. Losic, M. A. Tiffany, S. S. Nagy, and F. A. S. Sterrenburg (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol. 27: 116-127. https://doi.org/10.1016/j.tibtech.2008.11.003
- Poulsen, N. and N. Kroger (2006) Molecular genetic approaches to studying silica biomineralization in diatoms. J. Phycol. 42: 6-6. https://doi.org/10.1111/j.1529-8817.2005.00187.x
- Armbrust, E. V., J. A. Berges, C. Bowler, B. R. Green, D. Martinez, N. H. Putnam, S. G. Zhou, A. E. Allen, K. E. Apt, M. Bechner, et al. (2004) The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 306: 79-86. https://doi.org/10.1126/science.1101156
- Montsant, A., K. Jabbari, U. Maheswari, and C. Bowler (2005) Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol. 137: 500-513. https://doi.org/10.1104/pp.104.052829
- Apt, K.E., P. G. Kroth-Pancic, and A. R. Grossman (1997) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Phycologia 36: 3-3.
- Fischer, H., I. Robl, M. Sumper, and N. Kroger (1999) Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (Bacillariophyceae). J. Phycol. 35: 113-120. https://doi.org/10.1046/j.1529-8817.1999.3510113.x
- Dunahay, T. G., E. E. Jarvis, and P. G. Roessler (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J. Phycol. 31: 1004-1012. https://doi.org/10.1111/j.0022-3646.1995.01004.x
- Poulsen, N., P. M. Chesley, and N. Kroger (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J. Phycol. 42: 1059-1065. https://doi.org/10.1111/j.1529-8817.2006.00269.x
- Sheppard, V. C., A. Scheffel, N. Poulsen, and N. Kroger (2012) Live diatom silica immobilization of multimeric and redox-active enzymes. Appl. Environ. Microb. 78: 211-218. https://doi.org/10.1128/AEM.06698-11
- Scheffel, A., N. Poulsen, S. Shian, and N. Kroger (2011) Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 108: 3175-3180.
- Bradbury, J. (2004) Nature's nanotechnologists: Unveiling the secrets of diatoms. Plos Biol. 2: 1512-1515.
피인용 문헌
- Progress in Method and Reliability of Diatom Test in Drowning vol.44, pp.3, 2014, https://doi.org/10.7580/kjlm.2020.44.3.115