참고문헌
- Fairhead, M. and L. Thony-Meyer (2012) Bacterial tyrosinases: Old enzymes with new relevance to biotechnology. Nat. Biotechnol. 29: 183-191.
- Solomon, E. I., U. M. Sundaram, and T. E. Machonkin (1996) Multicopper oxidases and oxygenases. Chem. Rev. 96: 2563-2606. https://doi.org/10.1021/cr950046o
- Geng, J., S. B. Yu, X. Wan, X. J. Wang, P. Shen, P. Zhou, and X. D. Chen (2008) Protective action of bacterial melanin against DNA damage in full UV spectrums by a sensitive plasmid-based noncellular system. J. Biochem. Biophys. Methods. 70: 1151-1155. https://doi.org/10.1016/j.jprot.2007.12.013
- Garcia-Rivera, J., and A. Casadevall (2001) Melanization of cryptococcus neoformans reduces its susceptibility to the antimicrobial effects of silver nitrate. Med. Mycol. 39: 353-357. https://doi.org/10.1080/mmy.39.4.353.357
- Pawelek, J. M. and A. M. Korner (1982) The biosynthesis of mammalian melanin. Am. Sci. 70: 136-145.
- Van Gelder, C. W., W. H. Flurkey, and H. J. Wichers (1997) Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 45: 1309-1323. https://doi.org/10.1016/S0031-9422(97)00186-6
- Prota, G. (1980) Recent advances in the chemistry of melanogenesis in mammals. J. Invest. Dermatol. 75: 122-127. https://doi.org/10.1111/1523-1747.ep12521344
- Garcia-Borron, J. C. and F. Solano (2002) Molecular anatomy of tyrosinase and its related proteins: Beyond the histidine-bound metal catalytic center. Pigment Cell. Res. 15: 162-173. https://doi.org/10.1034/j.1600-0749.2002.02012.x
- Lerch, K. and L. Ettinger (1972) Purification and characterization of a tyrosinase from Streptomyces glaucescens. Eur. J. Biochem. 31: 427-437. https://doi.org/10.1111/j.1432-1033.1972.tb02549.x
- Pinero, S., J. Rivera, D. Romero, M. A. Cevallos, A. Martinez, F. Bolivar, and G. Gosset (2007) Tyrosinase from Rhizobium etli is involved in nodulation efficiency and symbiosis-associated stress resistance. J. Mol. Microbiol. Biotechnol. 13: 35-44. https://doi.org/10.1159/000103595
- Michalik, J., W. Emilianowicz-Czerska, L. Switalski, and K. Raczynska- Bojanowska (1975) Monophenol monooxygenase and lincomysin biosynthesis in Streptomyces lincolnensis. Antimicrob. Agents Chemother. 8: 526-531. https://doi.org/10.1128/AAC.8.5.526
- Streffer, K., E. Vijgenboom, A. W. J. W. Tepper, A. Makower, F. W. Scheller, G. W. Canters, and U. Wollenberger (2001) Determination of phenolic compounds using recombinant tyrosinase from Streptomyces antibioticus. Anal. Chim. Acta. 427: 201-210. https://doi.org/10.1016/S0003-2670(00)01040-0
- Lewandowski, A. T., D. A. Small, T. Chen, G. F. Payne, and W. E. Bentley (2006) Tyrosine-based "activatable pro-tag": Enzyme-catalyzed protein capture and release. Biotechnol. Bioeng. 93: 1207-1215. https://doi.org/10.1002/bit.20840
- Claus, H., and H. Decker (2006) Bacterial tyrosinases. Syst. Appl. Microbiol. 29: 3-14. https://doi.org/10.1016/j.syapm.2005.07.012
- Likhitwitayawuid, K. (2008) Stilbenes with tyrosinase inhibitory activity. Curr. Sci. India 94: 44-52.
- Faccio, G., K. Kruus, M. Saloheimo, and L. Thony-Meyer (2012) Bacterial tyrosinases and their applications. Process Biochem. 47: 1749-1760. https://doi.org/10.1016/j.procbio.2012.08.018
- Chang, T. S. (2009) An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 10: 2440-2475. https://doi.org/10.3390/ijms10062440
- Yang, H. Y., and C. W. Chen (2009) Extracellular and intracellular polyphenol oxidases cause opposite effects on sensitivity of Streptomyces to phenolics: A case of double-edged sword. PLoS One. 4: e7462. https://doi.org/10.1371/journal.pone.0007462
- Kong, K. H., M. P. Hong, S. S. Choi, Y. T. Kim, and S. H. Cho (2000) Purification and characterization of a highly stable tyrosinase from Thermomicrobium roseum. Biotechnol. Appl. Bioc. 31: 113-118. https://doi.org/10.1042/BA19990096
- Shuster, V., and A. Fishman (2009) Isolation, cloning and characterization of a tyrosinase with improved activity in organic solvents from Bacillus megaterium. J. Mol. Microb. Biotech. 17: 188-200. https://doi.org/10.1159/000233506
- Betancourt, A. M., V. Bernan, W. Herber, and E. Katz (1992) Analysis of tyrosinase synthesis in Streptomyces antibioticus. J. Gen. Microbiol. 138: 787-794. https://doi.org/10.1099/00221287-138-4-787
- Kohashi, P. Y., T. Kumagai, Y. Matoba, A. Yamamoto, M. Maruyama, and M. Sugiyama (2004) An efficient method for the overexpression and purification of active tyrosinase from Streptomyces castaneoglobisporus. Protein Expres. Purif. 34: 202-207. https://doi.org/10.1016/j.pep.2003.11.015
- Sendovski, M., M. Kanteev, V. S. Ben-Yosef, N. Adir, and A. Fishman (2010) Crystallization and preliminary X-ray crystallographic analysis of a bacterial tyrosinase from Bacillus megaterium. Acta Crystallogr, F. 66: 1101-1103. https://doi.org/10.1107/S1744309110031520
- Fairhead, M., and L. Thony-Meyer (2010) Role of the C-terminal extension in a bacterial tyrosinase. FEBS J. 277: 2083-2095. https://doi.org/10.1111/j.1742-4658.2010.07621.x
- Flurkey, W. H., and J. K. Inlow (2008) Proteolytic processing of polyphenol oxidase from plants and fungi. J. Inorg. Biochem. 102: 2160-2170. https://doi.org/10.1016/j.jinorgbio.2008.08.007
- Liu, N., T. Zhang, Y. J. Wang, Y. P. Huang, J. H. Ou, and P. Shen (2004) A heat inducible tyrosinase with distinct properties from Bacillus thuringiensis. Lett. Appl. Microbiol. 39: 407-412. https://doi.org/10.1111/j.1472-765X.2004.01599.x
- Sanchez-Amat, A., P. Lucas-Elio, E. Fernandez, J. C. Garcia-Borron, and F. Solano (2001) Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim. Biophia. Acat. 1547: 104-116. https://doi.org/10.1016/S0167-4838(01)00174-1
- Sakurai, T., and K. Kataoka (2007) Basic and applied features of multicopper oxidases, CueO, bilirubin oxidase, and laccase. Chem. Rec. 7: 220-229. https://doi.org/10.1002/tcr.20125
- Matoba, Y., T. Kumagai, A. Yamamoto, H. Yoshitsu, and M. Sugiyama (2006) Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J. Biol. Chem. 281: 8981-8990. https://doi.org/10.1074/jbc.M509785200
- Matoba, Y., N. Bando, K. Oda, M. Noda, F. Higashikawa, T. Kumagai, and M. Suqiyama (2011) A molecular mechanism for copper transportation to tyrosinase that is assisted by a metallochaperone, caddie protein. J. Biol. Chem. 286: 30219-30231. https://doi.org/10.1074/jbc.M111.256818
- De Faria, R. O., V. R. Moure, M. A. L. D. Amazonas, N. Krieger, and D. A. Mitchell (2007) The biotechnological potential of mushroom tyrosinases. Food Technol. Biotech. 45: 287-294.
- Halaouli, S., M. Asther, K. Kruus, L. Guo, M. Hamdi, J. C. Sigoillot, M. Asther, and A. Lomascolo (2005) Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. J. Appl. Microbiol. 98: 332-343. https://doi.org/10.1111/j.1365-2672.2004.02481.x
- Selinheimo, E., M. Saloheimo, E. Ahola, A. Westerholm-Parvinen, N. Kalkkinen, J. Buchert, and K. Kruus (2006) Production and characterization of a secreted, C-terminally processed tyrosinase from the filamentous fungus Trichoderma reesei. FEBS J. 273: 4322-4335. https://doi.org/10.1111/j.1742-4658.2006.05429.x
- Dolashki, A., A. Gushterova, W. Voelter, and B. Tchorbanov (2009) Purification and characterization of tyrosinases from Streptomyces albus. Z. Naturforsch C. 64: 724-732.
- Bubacco, L., E. Vijgenboom, C. Gobin, A. W. J. W. Tepper, J. Salgado, and G. W. Canters (2000) Kinetic and paramagnetic NMR investigations of the inhibition of Streptomyces antibioticus tyrosinase. J. Mol. Catal. B. - Enzym. 8: 27-35. https://doi.org/10.1016/S1381-1177(99)00064-8
- Ito, M, and K. Inouye (2005) Catalytic properties of an organic solvent-resistant tyrosinase from Streptomyces sp REN-21 and its high-level production in E. coli. J. Biochem. 138: 355-362. https://doi.org/10.1093/jb/mvi150
- Plonka, P. M. and M. Grabacka (2006) Melanin synthesis in microorganisms - biotechnological and medical aspects. Acta Biochim. Pol. 53: 429-443.
- Menter, J. M., and I. Willis (1997) Electron transfer and photoprotective properties of melanins in solution. Pigm. Cell Res. 10: 214-217. https://doi.org/10.1111/j.1600-0749.1997.tb00487.x
- Tsujino, Y., Y. Yokoo, and K. Sakato (1991) Hair coloring and waiving using oxidases. J. Soc. Cosmet. Chem. 42: 273-282.
- Tuncagil, S., S. K. Kayahan, G. Bayramoglu, M. Y. Arica, and L. Toppare (2009) L-Dopa synthesis using tyrosinase immobilized on magnetic beads. J. Mol. Catal. B - Enzym. 58: 187-193. https://doi.org/10.1016/j.molcatb.2008.12.014
- Pialis, P. and B. A. Saville (1998) Production of L-DOPA from tyrosinase immobilized on nylon 6,6: enzyme stability and scaleup. Enzyme Microb. Tech. 22: 261-268. https://doi.org/10.1016/S0141-0229(97)00195-6
- Pandey, G., C. Muralikrishna, and U. T. Bhalerao (1989) Mushroom tyrosinase catalyzed synthesis of coumestans, benzofuran derivatives and related heterocyclic-compounds. Tetrahedron. 45: 6867-6874. https://doi.org/10.1016/S0040-4020(01)89154-7
- Chen, T. H., R. Vazquez-Duhalt, C. F. Wu, W. E. Bentley, and G. F. Payne (2001) Combinatorial screening for enzyme-mediated coupling. Tyrosinase-catalyzed coupling to create protein-chitosan conjugates. Biomacromolecules 2: 456-462. https://doi.org/10.1021/bm000125w
- Anghileri, A., R. Lantto, K. Kruus, C. Arosio, and G. Freddi (2007) Tyrosinase-catalyzed grafting of sericin peptides onto chitosan and production of protein-polysaccharide bioconjugates. J. Biotechnol. 127: 508-519. https://doi.org/10.1016/j.jbiotec.2006.07.021
- Kang, G. D., K. H. Lee, C. S. Ki, J. H. Nahm, and Y. H. Park (2004) Silk fibroin/chitosan conjugate crosslinked by tyrosinase. Macromol. Res. 12: 534-539. https://doi.org/10.1007/BF03218439
- Jus, S., V. Kokol, and G. M. Guebitz (2009) Tyrosinase-catalysed coating of wool fibres with different protein-based biomaterials. J. Biomat. Sci. Polym. E. 20: 253-269. https://doi.org/10.1163/156856209X404523
- Freddi, G., A. Anghileri, S. Sampaio, J. Buchert, P. Monti, and P. Taddei (2006) Tyrosinase-catalyzed modification of Bombyx mori silk fibroin: Grafting of chitosan under heterogeneous reaction conditions. J. Biotechnol. 125: 281-294. https://doi.org/10.1016/j.jbiotec.2006.03.003
- Choi, Y. S., D. G. Kang, S. Lim, Y. J. Yang, C. S. Kim, and H. J. Cha (2011) Recombinant mussel adhesive protein fp-5 (MAP fp5) as a bulk bioadhesive and surface coating material. Biofouling. 27: 729-737. https://doi.org/10.1080/08927014.2011.600830
- Girelli, A. M, T. Giuliani, E. Mattei, and D. Papaleo (2009) Determination of an antioxidant capacity index by immobilized tyrosinase bioreactor. J. Agr. Food Chem. 57: 5178-5186. https://doi.org/10.1021/jf900125j
- Tatsuma, T., K. Komori, H. H. Yeoh, and N. Oyama (2000) Disposable test plates with tyrosinase and beta-glucosidases for cyanide and cyanogenic glycosides. Anal. Chim. Acta. 408: 233-240. https://doi.org/10.1016/S0003-2670(99)00744-8
- Saratale, R. G., G. D. Saratale, J. S. Chang, and S. P. Govindwar (2011) Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng. 42: 138-157. https://doi.org/10.1016/j.jtice.2010.06.006
- Duran, N. and E. Esposito (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: A review. Appl. Catal. B - Environ. 28: 83-99. https://doi.org/10.1016/S0926-3373(00)00168-5
- Rosenzweig, A. C. and M. H. Sazinsky (2006) Structural insights into dioxygen-activating copper enzymes. Curr. Opin. Struc. Biol. 16: 729-735. https://doi.org/10.1016/j.sbi.2006.09.005
- Ismaya, W. T., H. J. Rozeboom, A. Weijn, J. J. Mes, F. Fusetti, H. J. Wichers, and B. W. Bijkstra (2011) Crystal structure of agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry 50: 5477-5486. https://doi.org/10.1021/bi200395t
피인용 문헌
- B16F10 멜라닌 세포에서 약콩(Glycine soja Siebold et Zucc.) 분획 추출물의 멜라닌 생성 저해 효과 vol.43, pp.3, 2014, https://doi.org/10.15230/scsk.2017.43.3.231
- Type-3 Copper 효소로서 티로시나아제의 구조 및 기능적 특성에 관한 고찰 vol.33, pp.2, 2018, https://doi.org/10.7841/ksbbj.2018.33.2.63