Browse > Article
http://dx.doi.org/10.7841/ksbbj.2014.29.1.9

Recent Researches for Diatom as Inorganic and Bioenvironmental Materials  

Jang, Eui Kyoung (Department of Biotechnology and Bioinformatics, Korea University)
Shin, Hyun Kyeong (Department of Biotechnology and Bioinformatics, Korea University)
Pack, Seung Pil (Department of Biotechnology and Bioinformatics, Korea University)
Publication Information
KSBB Journal / v.29, no.1, 2014 , pp. 9-21 More about this Journal
Abstract
One of the most abundant microalgaes, diatom is characterized by its unique cell wall structures composed of nano-patterned silica. Due to its highly ordered porosity, these silica frustules, which are found as sediments called diatomite, were used as a cheap adsorption material for water purification. Recently, new emerging nanotechnology compels many researchers to have interest in such diatom's unique properties (eg, nano-scale mesoporosity, photo luminescence, light transparency, etc.) as biogenic inorganic materials as well as the biomass resource (conventional usage of microalgae). In this review, we will focus on the current knowledge about the diatoms research and the possibility of its applications.
Keywords
Diatom; Nanotechnology; Biogenic inorganic material; Frustule; Bioenvironmental application;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Parkinson, J. and R. Gordon (1999) Beyond micromachining: the potential of diatoms. Trends Biotechnol. 17: 190-196.   DOI
2 Hecky, R. E., K. Mopper, P. Kilham, and E. T. Degens (1973) Amino-Acid and Sugar Composition of Diatom Cell-Walls. Mar. Biol. 19: 323-331.   DOI
3 Shimizu, K., J. Cha, G. D. Stucky, and D. E. Morse (1998) Silicatein alpha: Cathepsin L-like protein in sponge biosilica. Proceedings of the National Academy of Sciences of the United States of America, 95: 6234-6238.
4 Kroger, N., C. Bergsdorf, and M. Sumper (1994) A new calciumbinding glycoprotein family constitutes a major diatom cell-wall component. Embo. J. 13: 4676-4683.
5 Dunahay, T. G., E. E. Jarvis, S. S. Dais, and P. G. Roessler (1996) Manipulation of microalgal lipid production using genetic engineering. Appl. Biochem. Biotechnol. 57-8: 223-231.
6 Kroger, N., R. Deutzmann, and M. Sumper (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286: 1129-1132.   DOI   ScienceOn
7 Sumper, M. (2004) Biomimetic patterning of silica by long-chain polyamines. Angew. Chem. Int. Edit. 43: 2251-2254.   DOI   ScienceOn
8 Borowitzka, M. A. (1992) Algal biotechnology products and processes - Matching science and economics. J. Appl. Phycol. 4: 267-279.   DOI
9 Tonon, T., D. Harvey, T. R. Larson, and I. A. Graham (2002) Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61: 15-24.   DOI   ScienceOn
10 Lebeau, T. and J. M. Robert (2003) Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products. Appl. Microbiol. Biot. 60: 624-632.   DOI
11 Lebeau, T. and J. M. Robert (2003) Diatom cultivation and biotechnologically relevant products. Part I: Cultivation at various scales. Appl. Microbiol. Biot. 60: 612-623.   DOI
12 Evenson, W. E., S. R. Rushforth, J. D. Brotherson, and N. Fungladda (1981) The effects of selected physical and chemical factors on attached diatoms in the uintah basin of Utah, USA. Hydrobiologia 83: 325-330.   DOI
13 Wu, J. T. (1999) A generic index of diatom assemblages as bioindicator of pollution in the Keelung River of Taiwan. Hydrobiologia 397: 79-87.   DOI
14 Passy, S. I. and R. W. Bode (2004) Diatom model affinity (DMA), a new index for water quality assessment. Hydrobiologia 524: 241-251.   DOI
15 Watanabe, T., K. Asai, and A. Houki (1986) Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage - Diatom assemblage index (Daipo). Sci. Total Environ. 55: 209-218.   DOI
16 Kelly, M. G. and B. A. Whitton (1995) Trophic diatom index - A new index for monitoring eutrophication in rivers. J. Appl. Phycol. 7: 433-444.   DOI   ScienceOn
17 Sladecek, V. (1986) Diatoms as indicators of organic pollution. Acta Hydroch. Hydrob. 14: 555-566.   DOI
18 Perales-Vela, H. V., J. M. Pena-Castro, and R. O. Canizares-Villanueva (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64: 1-10.   DOI   ScienceOn
19 Fehrmann, C. and P. Pohl (1993) Cadmium adsorption by the nonliving biomass of microalgae grown in axenic mass-culture. J. Appl. Phycol. 5: 555-562.   DOI
20 Vatamaniuk, O. K., S. Mari, Y. P. Lu,. and P. A. Rea (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase - Blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J. Biol. Chem. 275: 31451-31459.   DOI   ScienceOn
21 Parida, S. K., S. Dash, S. Patel, and B. K. Mishra (2006) Adsorption of organic molecules on silica surface. Adv. Colloid. Interfac. 121: 77-110.   DOI   ScienceOn
22 Yu, Y., J. Addai-Mensah, and D. Losic (2012) Functionalized diatom silica microparticles for removal of mercury ions. Sci. Technol. Adv. Mat. 13: 015008.   DOI
23 Losic, D., J. G. Mitchell, and N. H. Voelcker (2009) Diatomaceous Lessons in Nanotechnology and Advanced Materials. Adv. Mater. 21: 2947-2958.   DOI
24 Shingubara, S. (2003) Fabrication of nanomaterials using porous alumina templates. J. Nanopart. Res. 5: 17-30.   DOI   ScienceOn
25 Rosi, N. L., C. S. Thaxton, and C. A. Mirkin (2004) Control of nanoparticle assembly by using DNA-modified diatom templates. Angew. Chem. Int. Edit. 43: 5500-5503.   DOI
26 Payne, E. K., N. L. Rosi, C. Xue, and C. A. Mirkin (2005) Sacrificial biological templates for the formation of nanostructured metallic microshells. Angew. Chem. Int. Edit. 44: 5064-5067.   DOI   ScienceOn
27 De Stefano, L., L. Rotiroti, M. De Stefano, A. Lamberti, S. Lettieri, A. Setaro, and P. Maddalena (2009) Marine diatoms as optical biosensors. Biosens. Bioelectron. 24: 1580-1584.   DOI
28 Bao, Z. H., M. K. Song, S. C. Davis, Y. Cai, M. L. Liu, and K. H. Sandhage (2011) High surface area, micro/mesoporous carbon particles with selectable 3-D biogenic morphologies for tailored catalysis, filtration, or adsorption. Energ. Environ. Sci. 4: 3980-3984.   DOI
29 Davis, S. C., V. C. Sheppard, G. Begum, Y. Cai, Y. N. Fang, J. D. Berrigan, N. Kroger, and K. H. Sandhage (2013) Rapid flowthrough biocatalysis with high surface area, enzyme-loaded carbon and gold-bearing diatom frustule replicas. Adv. Funct. Mater. 23: 4611-4620.   DOI
30 Hoffmann, M. R., S. T. Martin, W. Y. Choi, and D. W. Bahnemann (1995) Environmental applications of semiconductor photocatalysis. Chem. Rev. 95: 69-96.   DOI   ScienceOn
31 Park, K. H., H. B. Gu, E. M. Jin, and M. Dhayal (2010) Using hybrid silica-conjugated $TiO_2$ nanostructures to enhance the efficiency of dye-sensitized solar cells. Electrochim. Acta 55: 5499-5505.   DOI   ScienceOn
32 Jeffryes, C., T. Gutu, J. Jiao, and G. L. Rorrer (2008) Two-stage photobioreactor process for the metabolic insertion of nanostructured germanium into the silica microstructure of the diatom Pinnularia sp. Mat. Sci. Eng. C-Bio. S, 28: 107-118.   DOI
33 Zacharias, M. and P. M. Fauchet (1997) Blue luminescence in films containing Ge and $GeO_2$ nanocrystals: The role of defects. Appl. Phys. Lett. 71: 380-382.   DOI
34 Farooq, M., I. A. Raja, and A. Pervez (2009) Photocatalytic degradation of TCE in water using $TiO_2$ catalyst. Sol. Energy, 83: 1527-1533.   DOI   ScienceOn
35 Sandhage, K. H., M. B. Dickerson, P. M. Huseman, M. A. Caranna, J. D. Clifton, T. A. Bull, T. J. Heibel, W. R. Overton, and M. E. A. Schoenwaelder (2002) Novel, bioclastic route to self-assembled, 3D, chemically tailored meso/nanostructures: Shape-preserving reactive conversion of biosilica (diatom) microshells. Adv. Mater. 14: 429-433.   DOI
36 Darley, W. M. and B. E. Volcani (1969) Role of silicon in diatom metabolism. a silicon requirement for deoxyribonucleic acid synthesis in diatom cylindrotheca-fusiformis Reimann and Lewin. Exp. Cell Res. 58: 334-342.   DOI
37 Mascolo, G., R. Ciannarella, L. Balest, and A. Lopez (2008) Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: A laboratory investigation. J. Hazard Mater. 152: 1138-1145.   DOI   ScienceOn
38 Jeffryes, C., T. Gutu, J. Jiao, and G. L. Rorrer (2008) Metabolic insertion of nanostructured $TiO_2$ into the patterned biosilica of the diatom pinnularia sp by a two-stage bioreactor cultivation process. Acs. Nano. 2: 2103-2112.   DOI   ScienceOn
39 Lang, Y., F. del Monte, B. J. Rodriguez, P. Dockery, D. P. Finn, and A. Pandit (2013) Integration of $TiO_2$ into the diatom Thalassiosira weissflogii during frustule synthesis. Sci. Rep-Uk, 3: 3205.   DOI
40 Lin, K. C., V. Kunduru, M. Bothara, K. Rege, S. Prasad, and B. L. Ramakrishna (2010) Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins. Biosens. Bioelectron. 25: 2336-2342.   DOI
41 Gale, D. K., T. Gutu, J. Jiao, C. H. Chang, and G. L. Rorrer (2009) Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica. Adv. Funct. Mater. 19: 926-933.   DOI
42 Poulsen, N. and N. Kroger (2006) Molecular genetic approaches to studying silica biomineralization in diatoms. J. Phycol. 42: 6-6.   DOI
43 Losic, D., Y. Yu, M. S. Aw, S. Simovic, B. Thierry, and J. Addai- Mensah (2010) Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies. Chem. Commun. 46: 6323-6325.   DOI
44 Aw, M. S., M. Bariana, Y. Yu, J. Addai-Mensah, and D. Losic (2013) Surface-functionalized diatom microcapsules for drug delivery of water-insoluble drugs. J. Biomater. Appl., 28: 163-174.   DOI
45 Gordon, R., D. Losic, M. A. Tiffany, S. S. Nagy, and F. A. S. Sterrenburg (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol. 27: 116-127.   DOI
46 Armbrust, E. V., J. A. Berges, C. Bowler, B. R. Green, D. Martinez, N. H. Putnam, S. G. Zhou, A. E. Allen, K. E. Apt, M. Bechner, et al. (2004) The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 306: 79-86.   DOI
47 Montsant, A., K. Jabbari, U. Maheswari, and C. Bowler (2005) Comparative genomics of the pennate diatom Phaeodactylum tricornutum. Plant Physiol. 137: 500-513.   DOI
48 Apt, K.E., P. G. Kroth-Pancic, and A. R. Grossman (1997) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Phycologia 36: 3-3.
49 Fischer, H., I. Robl, M. Sumper, and N. Kroger (1999) Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis (Bacillariophyceae). J. Phycol. 35: 113-120.   DOI
50 Poulsen, N., P. M. Chesley, and N. Kroger (2006) Molecular genetic manipulation of the diatom Thalassiosira pseudonana (Bacillariophyceae). J. Phycol. 42: 1059-1065.   DOI
51 Sheppard, V. C., A. Scheffel, N. Poulsen, and N. Kroger (2012) Live diatom silica immobilization of multimeric and redox-active enzymes. Appl. Environ. Microb. 78: 211-218.   DOI
52 Scheffel, A., N. Poulsen, S. Shian, and N. Kroger (2011) Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 108: 3175-3180.
53 Bradbury, J. (2004) Nature's nanotechnologists: Unveiling the secrets of diatoms. Plos Biol. 2: 1512-1515.
54 Treguer, P., D. M. Nelson, A. J. Vanbennekom, D. J. Demaster, A. Leynaert, and B. Queguiner (1995) The silica balance in the world Ocean - a Reestimate. Science 268: 375-379.   DOI
55 Alverson, A. J., J. J. Cannone, R. R. Gutell, and E. C. Theriot (2006) The evolution of elongate shape in diatoms. J. Phycol. 42: 655-668.   DOI
56 Grachev, M. A., V. V. Annenkov, and Y. V. Likhoshway (2008) Silicon nanotechnologies of pigmented heterokonts. BioEssays: news and reviews in molecular, cellular and developmental biology, 30: 328-337.   DOI
57 Round, F. E. (1990) Diatom Communities - Their Response to Changes in Acidity. Philos. T Roy. Soc. B, 327: 243-249.   DOI
58 Hildebrand, M., B. E. Volcani, W. Gassmann, and J. I. Schroeder (1997) A gene family of silicon transporters. Nature 385: 688-689.
59 Drum, R. W. and H. S. Pankratz (1964) Post mitotic fine structure of Gomphonema Parvulum. J. Ultra Mol. Struct. R, 10: 217-223.   DOI
60 Jeanmaire, D. L. and R. P. Vanduyne (1977) Surface raman spectroelectrochemistry. 1. heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J. Electroanal. Chem. 84: 1-20.   DOI   ScienceOn
61 Bismuto, A., A. Setaro, P. Maddalena, L. De Stefano, and M. De Stefano (2008) Marine diatoms as optical chemical sensors: A timeresolved study. Sensor Actuat B-Chem. 130: 396-399.   DOI
62 Dunahay, T. G., E. E. Jarvis, and P. G. Roessler (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J. Phycol. 31: 1004-1012.   DOI
63 Field, C. B., M. J. Behrenfeld, J. T. Randerson, and P. Falkowski (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237-240.   DOI
64 Leterme, S. C., E. Prime, J. Mitchell, M. H. Brown, and A. V. Ellis (2013) Diatom adaptability to environmental change: A case study of two Cocconeis species from high-salinity areas. Diatom. Res. 28: 29-35.   DOI
65 Losic, D., J. G. Mitchell, and N. H. Voelcker (2006) Fabrication of gold nanostructures by templating from porous diatom frustules. New. J. Chem. 30: 908-914.   DOI
66 Kanjilal, A., J. L. Hansen, P. Gaiduk, A. N. Larsen, N. Cherkashin, A. Claverie, P. Normand, E. Kapelanakis, D. Skarlatos, and E. Tsoukalas (2003) Structural and electrical properties of silicon dioxide layers with embedded germanium nanocrystals grown by molecular beam epitaxy. Appl. Phys. Lett. 82: 1212-1214.   DOI