DOI QR코드

DOI QR Code

사이클로덱스트린과 전분을 이용한 coenzyme Q10 복합체의 특성 연구

Structural and Solubility Characteristics of Coenzyme Q10 Complexes Including Cyclodextrin and Starch

  • 이준경 (한국산업기술대학교 생명화학공학과) ;
  • 이현주 (한국산업기술대학교 생명화학공학과) ;
  • 임재각 (한국산업기술대학교 생명화학공학과)
  • Lee, Joon-Kyoung (Department of Biological Science and Chemical Technology, Korea Polytechnic University) ;
  • Lee, Hyun-Joo (Department of Biological Science and Chemical Technology, Korea Polytechnic University) ;
  • Lim, Jae-Kag (Department of Biological Science and Chemical Technology, Korea Polytechnic University)
  • 투고 : 2013.06.09
  • 심사 : 2013.12.14
  • 발행 : 2014.04.30

초록

본 실험에서는 coenzyme $Q_{10}$을 cyclodextrin, starch를 이용하여 각각 복합체를 형성하고 형성된 복합체의 용해도 및 구조적 특성을 확인하였다. Starch 복합체는 용해 온도가 증가할수록 복합체 및 복합체내의 coenzyme $Q_{10}$의 용해도가 유의적으로 증가하는데 비해 cyclodextrin 복합체는 $37^{\circ}C$에서 coenzyme $Q_{10}$의 최대 용해도를 보였으며 이후 $50^{\circ}C$에서는 강하게 aggreagation이 일어났고, $80^{\circ}C$에서는 약해진 결합에 의해 복합체가 깨짐으로써 coenzyme $Q_{10}$이 물 위에 뜨는 형상을 나타내었다. 두 복합체의 구조적 차이를 FT-IR, XRD, DSC를 통하여 확인한 결과 cyclodextrin 복합체는 coenzyme $Q_{10}$의 isoprenoid chain에 주로 포접이 되어 있는데 반해 starch 복합체는 coenzyme $Q_{10}$의 isoprenoid chain 뿐만 아니라 benzoquinone ring에도 포접되어 있는 것을 확인하였고, 또한 starch 복합체가 cyclodextrin 복합체에 비해 coenzyme $Q_{10}$ 무정형영역이 더 크게 증가되어 있는 것을 확인하였다. In vitro simulated digestion model을 통하여 각 소화기관 별 복합체의 방출 패턴을 확인 한 결과 두 복합체 모두 구강, 위장의 효소 및 조건에 비해 소장의 효소와 조건에서 유의적으로 크게 coenzyme $Q_{10}$의 방출이 확인되었다. 따라서 coenzyme $Q_{10}$은 cyclodextrin, starch와 포접되어 복합체를 형성함으로서 생체이용율의 향상을 기대할 수 있다.

This study focused on assessing the solubility and structural characteristics of two types of coenzyme $Q_{10}$ ($CoQ_{10}$) complexes: the $CoQ_{10}$-starch and the $CoQ_{10}$-cyclodextrin complexes. The solubility of $CoQ_{10}$-starch complex increased significantly as the temperature was increased. However, the solubility of $CoQ_{10}$-cyclodextrin complex reached a peak at $37^{\circ}C$, and strong aggregation occurred at $50^{\circ}C$. When the temperature was raised to $80^{\circ}C$, the $CoQ_{10}$-cyclodextrin complex dissociated owing to the weakening of bonds, resulting in $CoQ_{10}$ emerging at the surface of water. Therefore, $CoQ_{10}$-cyclodextrin complexes have lower solubility, due to their reduced heat-stability, than do the $CoQ_{10}$-starch complexes. Structural differences between the two $CoQ_{10}$ complexes were confirmed by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD), and differential scanning calorimeter (DSC). The $CoQ_{10}$-cyclodextrin complex included an isoprenoid chain of $CoQ_{10}$, while the $CoQ_{10}$-starch complex included both the benzoquinone ring and the isoprenoid chain of $CoQ_{10}$. These results suggest that $CoQ_{10}$-starch complexes possess higher heat-stability and solubility than do the $CoQ_{10}$-cyclodextrin complexes.

키워드

참고문헌

  1. Ministry of Food and Drug Safety Health Functional Food Code. Available from: http://www.mfds.go.kr/eng/index.do Accessed Dec. 29, 2006.
  2. Lee SM. Study on the consumers' recognition of antioxidant health functional foods. MS thesis, ChungAng University, Seoul, Korea (2009)
  3. No KM, Leem DG, Kim MG, Park KS, Yoon TH, Hong J, Park SY, Jeong JY. Analysis of coenzyme $Q_{10}$ in dietary supplement by HPLC. J. Fd. Hyg. Safety 26: 12-15 (2011)
  4. Lee BJ, Huang YC, Chen SJ, Lin PT. Coenzyme $Q_{10}$ supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with coronary artery disease. Nutrition 28: 250-255 (2012) https://doi.org/10.1016/j.nut.2011.06.004
  5. Kim JK, Roh SK. The effect of coenzyme $Q_{10}$ supplementation on oxidative stress index and antioxidant capacity in the elderly. Korean J. Exerc. Nutr. 13: 29-35 (2009)
  6. Kumar A, Kaur H, Devi P, Mohan V. Role of coenzyme $Q_{10}$ ($CoQ_{10}$) in cardiac disease, hypertension and meniere-like syndrome. Pharmacol. Ther. 124: 259-268 (2009) https://doi.org/10.1016/j.pharmthera.2009.07.003
  7. Littarru GP, Langsjoen P. Coenzyme $Q_{10}$ and statins: biochemical and clinical implications. Mitochondrion 7: 168-174 (2007) https://doi.org/10.1016/j.mito.2007.03.002
  8. Hargreaves IP, Lane A, Sleiman PMA. The coenzyme $Q_{10}$ status of the brain regions of parkinson's disease patients. Neurosci. Lett. 447: 17-19 (2008) https://doi.org/10.1016/j.neulet.2008.09.069
  9. Shults CW. Therapeutic role of coenzyme $Q_{10}$ in parkinson's disease. Pharmacol. Ther. 107: 120-130 (2005) https://doi.org/10.1016/j.pharmthera.2005.02.002
  10. Hickey MA, Zhu C, Medvedeva V, Franich NR, Levine MS, Chesselet MF. Evidence for behavioral benefits of early dietary supplementation with coenzyme $Q_{10}$ in a slowly progressing mouse model. Mol. Cell. Neurosci. 49: 149-157 (2012) https://doi.org/10.1016/j.mcn.2011.10.007
  11. Kumar P, Kumar P, Ram A, Kumar M, Kumar R. Coenzyme $Q_{10}$: a progress towards the treatment of neurodegenerative disease. OPEM 10: 239-253 (2010)
  12. Shim EJ, Noh BS. Possible application of coenzyme $Q_{10}$ in food industry. Food Sci. Indus. 39(1): 37-44 (2006)
  13. Hwang WS, Kwon KI, Bang KH. Enhanced bioavailability of itraconazole in liquid preparation. Yakhak Hoeji 44: 528-533 (2000)
  14. Cho YH, Shin DS, Park JY, Microencapsulation technology of food industry. Food Sci. Indus. 30(4): 98-111 (1997)
  15. Kim JS, Lee JY, Oh MH, Jo SD, Nam YS. Micelle and nanoemulsions for in vivo delivery of therapeutic and diagnostic agents. Polym. Sci. Technol. 23: 174-184 (2012)
  16. Cho WG. A recent research trends for food emulsions using pickering stabilization of nano-particles. J. Korean Oil Chemists Soc. 29: 238-247 (2012)
  17. Lim JS, Gang HJ, Yoon SW, Kim HM, Suk JW, Kim DU, Lim JK. Preparation and its stability of a coenzyme $Q_{10}$ nanoemulsion by high pressure homogenization with different valve type conditions. Korean J. Food Sci. Technol. 42: 565-570 (2010)
  18. Thanatuksorn P, Kawai K, Hayakawa M, Hayashi M, Kajiwara K. Improvement of the oral bioavailability of coenzyme $Q_{10}$ by emulsification with fats and emulsifiers used in the food industry. LWT-Food Sci. Technol. 42: 385-390 (2009) https://doi.org/10.1016/j.lwt.2008.03.006
  19. Choi CH, Kim SH, Shanmugam S, Baskaran R, Park JS, Yong CS, Choi HG, Yoo BK, Han K. Relative bioavailability of coenzyme $Q_{10}$ in emulsion and liposome formulations. Biomol. Ther. 18: 99-105 (2010) https://doi.org/10.4062/biomolther.2010.18.1.099
  20. Carli F, Chiellini EE, Bellich B, Macchiavelli S, Cadelli G. Ubidecarenone nanoemulsified composite systems. Int. J. Pharm. 291: 113-118 (2005) https://doi.org/10.1016/j.ijpharm.2004.07.048
  21. Seo DW, Kang MJ, Sohn YS, Lee JH. Self-microemulsifying formulation-based oral solution of coenzyme $Q_{10}$. Yakugaku Zasshi 129: 1559-1563 (2009) https://doi.org/10.1248/yakushi.129.1559
  22. Singh M, Sharma R, Banerjee UC. Biotechnological applications of cyclodextrins. Biotechnol. Adv. 20: 341-359 (2002) https://doi.org/10.1016/S0734-9750(02)00020-4
  23. Jang SM. Preparation and properties of mixed cyclodextrin/ linoleic acid inclusion complex. MS thesis, Soongsil University, Seoul, Korea (2009)
  24. Park SJ. Pharmaceutical studies on inclusion complex of clonixin with cyclodextrins. MS thesis, Ewha Womans University, Seoul, Korea (1994)
  25. Choi YS, Cha HJ. A study on the inclusion complex of enoxacin with ${\alpha}$-cylocdextrin and ${\beta}$-cyclodextrin. J. Korean Soc. Hygienic Sci. 7: 27-36 (2001)
  26. Kwack ES, Cho IS, Lee GW, Jee UK, Park DK. Preparation and evaluation of inclusion complex of muscone with ${\beta}$-cyclodextrin. J. Kor. Pharm. Sci. 27: 265-269 (1997)
  27. Lee UH. Preparation of inclusion complex of lutein with hydroxypropyl-${\beta}$-cyclodextrin and it's characteristics. MS thesis, Chungbuk National University, Cheongju, Korea (2010)
  28. Lutka A, Pawlaczyk J. Inclusion complexation of coenzyme $Q_{10}$ with cyclodextrins. Acta Pol. Pharm. 52: 379-386 (1995)
  29. Lutka A, Pawlaczyk J. Investigation of inclusion complexes of coenzyme $Q_{10}$ with ${\gamma}$-cyclodextrin and methyl-${\beta}$-cyclodextrin (MS=0.97). part I. comoparison of complexation methods in the solution state. Acta Pol. Pharm. 53: 193-196 (1996)
  30. Lutka A, Pawlaczyk J. Investigation of inclusion complexes of coenzyme $Q_{10}$ with ${\gamma}$-cyclodextrin and methyl-${\beta}$-cyclodextrin (MS=0.97). part II. the influence of complexation temperature ("heating" method) on coenzyme $Q_{10}$ solubility. Acta Pol. Pharm. 53: 197-201 (1996)
  31. Lutka A, Pawlaczyk J. Investigation of inclusion complexes of coenzyme $Q_{10}$ with ${\gamma}$-cyclodextrin and methyl-${\beta}$-cyclodextrin (MS=0.97). part III. the influence of cyclodextrins on coenzyme $Q_{10}$ stability. Acta Pol. Pharm. 54: 279-285 (1997)
  32. Fir MM, Milivojevic L, Prosek M, Smidovnik A. Property studies of coenzyme $Q_{10}$-cyclodextrins complexes. Acta Chim. Slov. 56: 885-891 (2009)
  33. Fir MM, Smidovnik A, Milivojevic L, Zmitek J, Prosek M. Studies of $CoQ_{10}$ and cyclodextrin complexes: solubility, thermo- and photo-stability. J. Incl. Phenom. Macro. 64: 225-232 (2009) https://doi.org/10.1007/s10847-009-9555-4
  34. Higashi T, Nishimura K, Yoshimatsu A, Ikeda H, Arima K, Motoyama K, Hirayama F, Uekama K, Arima H. Preparation of four types of coenzyme $Q_{10}/{\gamma}$-cyclodextrin supramolecular complexes and comparison of their pharmaceutical properties. Chem. Pharm. Bull. 57: 965-970 (2009) https://doi.org/10.1248/cpb.57.965
  35. Terao K, Nakata D, Fukumi H, Schmid G, Arima H, Hirayama F, Uekama K. Enhancement of oral bioavailability of coenzyme $Q_{10}$ by complexation with ${\gamma}$-cyclodextrin in healthy adults. Nutr. Res. 26: 503-508 (2006) https://doi.org/10.1016/j.nutres.2006.08.004
  36. Copeland L, Blazek J, Salman H, Tang MC. Form and functionality of starch. Food Hydrocolloid. 23: 1527-1534 (2009) https://doi.org/10.1016/j.foodhyd.2008.09.016
  37. Heinemann C, Escher F, Conde-Petit B. Structural features of starch-lactone inclusion complexes in aqueous potato starch dispersions: the role of amylose and amylopectin. Carbohyd. Polym. 51: 159-168 (2003) https://doi.org/10.1016/S0144-8617(02)00156-X
  38. Karlberg M, Piculell L, Huang L. Solubility of amylose/ionic surfactant complexes in dilute aqueous solutions: dependence on surfactant concentration. Carbohyd. Polym. 70: 350-354 (2007) https://doi.org/10.1016/j.carbpol.2007.05.007
  39. Choi HJ. A study on the preparation and characterization of Octacosanol-Starch complex. MS thesis, Korea Polytechnic University, Siheung, Korea (2011)
  40. Jang DG. A study on preparation and characterization of Octacosanol-Dextrin complex. MS thesis, Korea University, Seoul, Korea (2011)
  41. Kim EA, Kim JY, Chung HJ, Lim ST. Preparation of aqueous dispersions of coenzyme $Q_{10}$ nanoparticles with amylomaize starch and its dextrin. LWT-Food Sci. Technol. 47: 493-499 (2012) https://doi.org/10.1016/j.lwt.2012.02.013
  42. Wulff G, Avgenaki G, Guzmann MSP. Molecular encapsulation of flavours as helical inclusion complexes of amylose. J. Cereal Sci. 41: 239-249 (2005) https://doi.org/10.1016/j.jcs.2004.06.002
  43. Lalush I, Bar H, Zakaria I, Eichler S, Shimoni E. Utilization of amylose-lipid complexes as molecular nanocapsules for conjugated linoleic acid. Biomacromolecules 6: 121-130 (2005) https://doi.org/10.1021/bm049644f
  44. Lee NR. A study on the food additives labelling practices for beverages and necessity of nutritional education. MS thesis, Hanyang University, Seoul, Korea (2010)
  45. Yoo HJ. Comparisons of in vitro digestion models for assessing antioxidant effects in apple peels. MS thesis, Hanyang University, Seoul, Korea (2012)
  46. Saenger W. The structure of the blue starch-iodine complex. Naturwissenschafter 71: 31-36 (1984) https://doi.org/10.1007/BF00365977
  47. Biliaderis CG, Galloway G. Crystallization behaviour of amylose-Vcomplexes: structure-property relationships. Carbohyd. Res. 189: 31-48 (1989) https://doi.org/10.1016/0008-6215(89)84084-4
  48. Tufvesson F, Eliasson AC. Formation and crystallization of amylose-monoglyceride complex in a starch matrix. Carbohyd. Polym. 43: 359-365 (2000) https://doi.org/10.1016/S0144-8617(00)00179-X
  49. Brewster ME, Loftsson T. cyclocdextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59: 645-666 (2007) https://doi.org/10.1016/j.addr.2007.05.012
  50. Lesmes U, Barchechath J, Shimoni E. Continuous dual feed homogenization for production of starch inclusion complexes for controlled release of nutrients. Innov. Food Sci. Emerg. 9: 507-515 (2008) https://doi.org/10.1016/j.ifset.2007.12.008
  51. Yang Y, Gu Z, Zhang G. Delivery of bioactive conjugated linoleic acid with self-assembled amylose-CLA complex. J. Agr. Food Chem. 57: 7125-7130 (2009) https://doi.org/10.1021/jf9016306
  52. Chohen R, Orlova Y, Koralev M, Ungar Y, Shimoni E. Structural and functional properties of amylose complexes with genistein. J. Agr. Food Chem. 56: 4212-4218 (2008) https://doi.org/10.1021/jf800255c
  53. Lesmes U, Cohen SH, Shener Y, Shimoni E. Effects of long chain fatty acid unsaturation on the structure and controlled release properties of amylose complexes. Food Hydrocolloid. 23: 667-675 (2009) https://doi.org/10.1016/j.foodhyd.2008.04.003