DOI QR코드

DOI QR Code

Analysis of External Fibrillation of Fiber by Confocal Reflection Microscopy

공초점반사현미경법을 이용한 섬유의 외부소섬유화 분석

  • Kwon, Ohkyung (Seoul National University, National Instrumentation Center for Environmental Management, Nanobioimaging Center)
  • 권오경 (서울대학교 농생명과학공동기기원 나노바이오이미징센터)
  • Received : 2014.04.11
  • Accepted : 2014.04.23
  • Published : 2014.04.30

Abstract

Confocal Reflection Microscopy (CRM) was applied to investigate external fibrillation of different types of fibers such as Kajaani reference fiber, Whatman filter fiber, thermomechanical pulp (TMP), and recycled TMP fiber. It was confirmed that the CRM images are created from surface structures of the fiber cell wall. Confocal Laser Scanning Microscopy (CLSM) captured overall shape of the fiber, but minute details of the surface of the fiber were missed. CRM captured the minute details of the fiber surface. From the CRM and CLSM images, it was observed that the CRM images mainly appeared on the fiber surfaces. External fibrillation of the fiber occurs at the fiber surface, not inside the cell wall. Thus, it was concluded that investigation on the external fibrillation of the fiber was possible by utilizing CRM images. A direct qualtitative and quantitative method for analysis of external fibrillation of fiber was demonstrated by utilizing surface area to volume ratio, volume fraction, and roughness calculated from 3-dimensional images reconstructed from stacks of CRM images from the different fibers.

Keywords

References

  1. Hartman, R. R., Mechanical Treatment of Pulp Fibers for Paper Property Development. Doctoral Thesis, Doctoral thesis, The Institute of Paper Science and Technology, Lawrence University, Appleton, Wisconsin (1984).
  2. Kang, T.,and Paulapuro, H., Effect of external fibrillation on paper strength, Pulp & Paper Canada 107(7/8):51-54(2006).
  3. Kang, T., Role of external fibrillation in pulp and paper properties, Doctoral thesis, Department of Forest Products Technology, Helsinki University of Technology, Espoo, Finland (2007).
  4. Kim, C. H.,and Wadhams, K. R., Use of modern microscopes in analyzing fiber and paper properties(I), Journal of Korea TAPPI 30(1):7-17(1998).
  5. Seo, Y. B., Kim, D., Lee, J. H., and Jeon, Y., Mechanical impact treatment treatment on pulp fibers and their handsheet properties, Journal of Korea TAPPI 34(5):56-62(2002).
  6. Won, J. M., Effect of internal fibrillation on the paper properties, Journal of Korea TAPPI 35(1):1-6(2003).
  7. Wang, X., Improving the papermaking properties of Kraft pulp by controlling hornification and internal fibrillation, Doctoral thesis, Laboratory of Paper and Printing Technology, Helsinki University of Technology, Espoo, Finland(2006).
  8. Won, J. M. and Lee, J. H., Quantitative characterization of internal fibrillation of pulp fiber, Journal of Korea TAPPI 39(1):1-7(2007).
  9. Yoon, S.-H., Lee, Y.-S., Kim, T.-Y.,and Kim, J.-Y., The separated refining system for cotton staple and linter fibers: refining efficiency and paper properties, Journal of Korea TAPPI 35(4):8-16(2003).
  10. Jang, H-S, and Park, J-M, Characteristics of stock drainage on refining load and analysis of drainage factors, Journal of Korea TAPPI 36(2):10-16(2004).
  11. Walsh, F. L. and Banerjee, S., An isotopic study of the effects of refining on fiber, Pan Pacific Conference (2006).a page number.
  12. Moran, A., The investigation of wet fiber structures using an ESEM. M. Sc. Thesis. Dept. of Paper Science. UMIST (1992).
  13. Mosss, P. A., Kropholler, H. W. and Sheffield, E., LTSEM-great potential for pulp evaluation. Paper Technology 30(9):IX12-IX14(1989).
  14. Jang, H. F., Robertson, A. G. and Seth, R. S., Optical sectioning of pulp fibers with Confocal Scanning Laser Microscopy. Tappi 1991 International Paper Physics Conference: 277-279(1991).
  15. Kim, C. H. and Wadhams, K. R., Use of modern microscopes in analyzing fiber and paper properties(I), Journal of Korea TAPPI 30(1):7-17(1998).
  16. Kim, Chul-Hwan and Wadhams, R. Keith, Use of modern microscope in analyzing fiber and paper properties (II), Journal of Korea TAPPI 31(3):60-67 (1999).
  17. Kim, S.-H., Park, J.-M.,and Kim, C.-H., Effects of fiber wall thickness on paper properties using CLSM, Journal of Korea TAPPI 31(1):39-44(1999).
  18. Kim, S.-H., Park, J.-M.,and Kim, C.-H., Analysis of effects of fiber's collapse index on physical properties of paper using CLSM, Journal of Korea TAPPI 31(1):46-51(1999).
  19. Lee, H. L., Kim, C. H., Youn, H. J., and Jung, T. M., Studies on the densification of recycled sheet structure with thermal image analysis and CLSM, Journal of Korea TAPPI 31(4):8-15(1999).
  20. Jo, J. Y., Min, C. K., and Lee, S. H., Comparison of the morphological properties of the traditional handmade papers using CLSM, Journal of Korea TAPPI 32(4):87-94(2000).
  21. Jeong, S.-H.,and Cho, N.-S., Study of morphology and physical properties of Indian Mallow(Abutilo navicennae Gaertner) fibers by CLSM(I), Journal of Korea TAPPI 34(2):61-66(2002).
  22. Paddock, S., Confocal reflection microscopy: The "other" confocal mode, Biotechniques 32(2):274-278 (2002).
  23. Bernas, T., and Dobrucki, J. W., Backscattered light confocal imaging of intracellular MTT-formazan crystals, Microscopy Research Technique 64(2):126-134 (2004). https://doi.org/10.1002/jemt.20070
  24. Donaldson, L., and Frankland, A., Ultrastructure of iodine treated wood, Holzforschung 58(3):219-225 (2004).
  25. Batchelor, W.J., Conn, A.B., and Parker, I.H., Measuring the fibril angle of fibres using confocal microscopy. Appita Journal 50(5):377-380 (1997).
  26. Donaldson, L. and Frankland, A., Ultrastructure of iodine treated wood. Holzforschung 58(3):219-225 (2004).
  27. Sedighi-Gilani, M., Sunderland, H., and Navi, P., Microfibril angle non-uniformities within normal and compression wood tracheids. Wood Science and Technology 39(6):419-430 (2005). https://doi.org/10.1007/s00226-005-0022-0
  28. Donaldson, L. A., Grace, J., Downes, G. M., Withintree variation in anatomical properties of compression wood in radiate pine, IAWA Journal 25(3):253-271 (2004). https://doi.org/10.1163/22941932-90000364
  29. Donaldson, L. A., Singh, A. P., Yoshinaga, A., Takabe, K., Lignin distribution in mild compression wood of Pinus radiate D.Don., Canadian Journal of Botany 77(1):41-50 (1999).
  30. Schneider, C. A., Rasband, W. S., and Eliceiri, K. W., NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7):671-675 (2012). https://doi.org/10.1038/nmeth.2089
  31. Doube, M., Klosowski, M. M., Arganda-Carreras, I., Cordelieres, F., Dougherty, R. P., Jackson, J., Schmid, B., Hutchinson, J. R., and Shefelbine, S. J., BoneJ: Free and extensible bone image analysis in ImageJ. Bone 47(6):1076-1079 (2010). https://doi.org/10.1016/j.bone.2010.08.023
  32. Forster, B., Van de Ville, D., Berent, J., Sage, D., and Unser, M., Complex wavelets for extended depth-of-field: A new method for the fusion of multichannel microscopy images. Microscopy Research and Technique 65(1-2):33-42 (2004). https://doi.org/10.1002/jemt.20092
  33. Chinga, G., Johnssen, P.O., Dougherty, R, Lunden-Berli, E. and Walter, J., Quantification of the 3D microstructure of SC surfaces. Journal of Microscopy 227(3): 254-265 (2007). https://doi.org/10.1111/j.1365-2818.2007.01809.x