DOI QR코드

DOI QR Code

A Low Complexity Bit-Parallel Multiplier over Finite Fields with ONBs

최적정규기저를 갖는 유한체위에서의 저 복잡도 비트-병렬 곱셈기

  • 김용태 (광주교육대학교 수학교육과)
  • Received : 2014.01.10
  • Accepted : 2014.04.11
  • Published : 2014.04.30

Abstract

In H/W implementation for the finite field, the use of normal basis has several advantages, especially the optimal normal basis is the most efficient to H/W implementation in $GF(2^m)$. The finite field $GF(2^m)$ with type I optimal normal basis(ONB) has the disadvantage not applicable to some cryptography since m is even. The finite field $GF(2^m)$ with type II ONB, however, such as $GF(2^{233})$ are applicable to ECDSA recommended by NIST. In this paper, we propose a bit-parallel multiplier over $GF(2^m)$ having a type II ONB, which performs multiplication over $GF(2^m)$ in the extension field $GF(2^{2m})$. The time and area complexity of the proposed multiplier is the same as or partially better than the best known type II ONB bit-parallel multiplier.

유한체의 H/W 구현에는 정규기저를 사용하는 것이 효과적이며, 특히 최적 정규기저를 갖는 유한체의 H/W 구현이 가장 효율적이다. 타입 I 최적 정규기저를 갖는 유한체 $GF(2^m)$은 m 이 짝수이기 때문에 어떤 암호계에는 응용되지 못하는 단점이 있다. 그러나 타입 II 최적 정규기저를 갖는 유한체의 경우는 NIST에서 제안한 ECDSA 의 권장 커브가 주어진 $GF(2^{233})$이 타입 II 최적 정규 기저를 갖는 등 여러 응용분야에 적용 되므로, 이에 대한 효율적인 구현에 관한 연구가 활발하게 진행되고 있다. 본 논문에서는 타입 II 최적 정규기저를 갖는 유한체 $GF(2^m)$의 연산을 정규기저를 이용하여 표현하여 확대체 $GF(2^{2m})$의 원소로 표현하여 연산을 하는 새로운 비트-병렬 곱셈기를 제안하였으며, 기존의 가장 효율적인 곱셈기들보다 블록 구성방법이 용이하며, XOR gate 수가 적은 저 복잡도 곱셈기이다.

Keywords

References

  1. R. Lidl and H. Niederreiter, Introduction to finite fields and its applications. Cambridge Univ. Press, 1994.
  2. A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and T. Yaghoobian, Applications of finite fields. Kluwer Academic, 1993.
  3. H. Wu and M.A. Hasan, "Low Complexity bit-parallel multipliers for a class of finite fields," IEEE Trans. Computers, vol. 47, no. 8, 1998, pp. 883-887. https://doi.org/10.1109/12.707588
  4. A. Reyhani-Maslleh and M. H. Hasan, "Efficient Digit Serial Normal Basis Multiplier over Binary Extension Fields," ACM Trans. Embedded Systems and Security, vol. 3, 2004, pp. 575-592. https://doi.org/10.1145/1015047.1015053
  5. B. Sunar and C. K. Koc, "An efficient optimal normal basis type II multiplier," IEEE Trans. Computers, vol. 50, no. 1, 2001, pp. 83-88. https://doi.org/10.1109/12.902754
  6. C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, and L. S. Reed, "VLSI architecture for computing multiplications and inverses in $GF^(2^m)}$," IEEE Trans. Computers, vol. 34, no. 8, 1985, pp. 709-716.
  7. A. Reyhani-Masolleh and M. H. Hasan, "A new construction of Massey-Omura parallel multilplier over $GF^(2^m)}$," IEEE Trans. Computers, vol. 51, no. 5, 2002, pp. 512-520.
  8. C.-H. Kim, S. Oh, and J. Lim, "A new hardware architecture for operations in $GF^(2^m)}$," IEEE Trans. Computers, vol. 51, no. 1, 2002, pp. 90-92. https://doi.org/10.1109/12.980019
  9. S.-J. Cho, J.-G. Kim, U.-S. Choi, and S.-T. Kim, "Cross-correlation of linear and nonlinear GMW-sequences generated by the same primitive polynomial on $GF^(2^p)}$," The Korea Institute of Electronic Communication Sciences 2011 Spring Conf., vol. 5, no. 1, 2011, pp. 155-158.
  10. H.-D. Kim, S.-J. Cho, M.-J. Kwon, and H.-J. An, "A study on the cross sequences," J. of The Korea Institute of Electronic Communication Sciences, vol. 7, no. 1, 2012, pp. 61-67.
  11. Y. Kim, "Fast Sequential Optimal normal Bases Multipliers over finite fields," J. of The Korea Institute of Electronic Communication Sciences, vol. 8, no. 8, 2013, pp. 1207-1212. https://doi.org/10.13067/JKIECS.2013.8.8.1207
  12. M. Elia and M. Leone, "On the Inherent Space Complexity of Fast Parallel Multipliers for $GF^(2^m)}$," IEEE Trans. Computers, vol. 51, no. 3, 2002. pp. 346-351. https://doi.org/10.1109/12.990131
  13. S. Gao Jr. and H. W. Lenstra, "Optimal normal bases," Designs, Codes and Cryptography, vol. 2, 1992, pp. 315-323. https://doi.org/10.1007/BF00125200
  14. Y. Kim, "A Fast Multiplier of Composite fields over finite fields," J. of The Korea Institute of Electronic Communication Sciences, vol. 6, no. 3, 2011, pp. 389-395.
  15. U.-S. Choi and S.-J. Cho, "Design of Binary Sequence with optimal Cross-correlation Values," J. of The Korea Institute of Electronic Communication Sciences, vol. 6, no. 4, 2011, pp. 539-544.