DOI QR코드

DOI QR Code

Temperature Dependence of Electron Mobility in Uniaxial Strained nMOSFETs

  • Sun, Wookyung (Department of Electronic Engineering, Ewha Womans University) ;
  • Shin, Hyungsoon (Department of Electronic Engineering, Ewha Womans University)
  • Received : 2013.08.10
  • Accepted : 2014.02.09
  • Published : 2014.04.30

Abstract

The temperature dependence of strain-enhanced electron mobility in nMOSFETs is investigated by using a self-consistent Schr$\ddot{o}$dinger-Poisson solver. The calculated results suggest that vertical compressive stress is more efficient to maintain the strain-enhanced electron mobility than longitudinal tensile stress in high temperature condition.

Keywords

References

  1. M. V. Fischetti, F. Gamiz, and W. Hansch, "On the enhanced electron mobility in strained-silicon inversion layers," J. Appl. Phys., vol. 92, no. 12, pp. 7320-7324, Dec. 2002. https://doi.org/10.1063/1.1521796
  2. S. E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, Z. Ma, B. Mcintyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar, S. Tyagi, T. Ghani, K. Mistry, M. Bohr, and Y. El-Mansy, "A logic nanotechnology featuring strained-silicon," IEEE Electron Device Lett., vol. 25, no. 4, pp. 191-193, Apr. 2004. https://doi.org/10.1109/LED.2004.825195
  3. K. -W. Ang, K. -J. Chui, C. -H. Tung, N. Balasubramanian, M. -Fu. Li, G. S. Samudra, and Y. -C. Yeo, "Enhanced strain effects in 25-nm gate-length thin-body nMOSFETs with silicon-carbon source/drain and tensile-stress liner," IEEE Electron Device Lett., vol. 28, no. 4, pp. 301-304, Apr. 2007. https://doi.org/10.1109/LED.2007.893221
  4. K. Uchida, M. Saitoh, and S. Kobayashi, "Carrier transport and stress engineering in advanced nanoscale transistors from (100) and (110) transistors to carbon nanotube FETs and beyond," in IEDM Tech. Dig., 2008, pp. 1-4.
  5. S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, and N. Sugiyama, "Carrier-transport-enhanced channel CMOS for improved power consumption and performance," IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 21-39, Jan. 2008. https://doi.org/10.1109/TED.2007.911034
  6. S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, "Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor fieldeffect transistors," J. Appl. Phys., vol. 80, no. 3, pp. 1567-1577, Aug. 1996. https://doi.org/10.1063/1.362953
  7. K. Masaki, C. Hamaguchi, K. Taniguchi, and M. Iwase, "Electron mobility in Si inversion layers," Japan. J. Appl. Phys., vol. 28, no. 10, pp. 1856-1863, Oct. 1989. https://doi.org/10.1143/JJAP.28.1856
  8. Y. Omura, T. Yamamura, and S. Sato, "Low-temperature behavior of phonon-limited electron mobility of sub-10-nm thick silicon-on-insulator metal-oxide-semiconductor field-effect transistor with (001) and (111) Si Surface channels," Japan. J. Appl. Phys., vol. 48, pp. 071204-1, Jul. 2009. https://doi.org/10.1143/JJAP.48.071204
  9. S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, "Importance of inter-valley phonon scattering on mobility enhancement in strained Si MOSFETs," in Proc. Int. Conf. SISPAD Tech., 1996, pp. 5-6.
  10. T. -S. Chang, T. Y. Lu, and T. -S. Chao, "Temperature dependence of electron mobility on strained nMOSFETs fabricated by strain-gate engineering," IEEE Electron Device Lett., vol. 33, no. 7, pp. 931-933, Jul. 2012. https://doi.org/10.1109/LED.2012.2194982
  11. P. C. Huang, S. L. Wu, S. J. Chang, C. W. Kuo, C. Y. Chang, Y. T. Huang, Y. C. Cheng and O. Cheng, "Temperature dependence of electrical characteristics of strained nMOSFETs using stress memorization technique," IEEE Electron Device Lett., vol. 32, no. 7, pp. 835-837, Jul. 2011. https://doi.org/10.1109/LED.2011.2140350
  12. H. Shin, G. M. Yeric, A. F. Tasch and C. M. Maziar, "Physicaly-based models for effective mobility and local-field mobility of electrons in MOS inversion layers," Solid-State Electronics, vol. 34, pp. 545-552, Jun. 1991. https://doi.org/10.1016/0038-1101(91)90123-G
  13. D. K. Ferry, Semiconductors, 1st ed., Macmillan, N.Y, 2000, pp. 223-225.
  14. C. -Y. Wu, and G. Thomas, "Two-dimensional electron-lattice scattering in thermally oxidized silicon surface-inversion layers," Phy. Rev. B, vol. 9, pp. 1724-1732, Feb. 1974. https://doi.org/10.1103/PhysRevB.9.1724
  15. R. Shah, and M. M. Souza, "Semi-empirical phonon scattering model," in Proc. World Congress on Engineering, 2009.
  16. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, "On the universality of inversionlayer mobility in Si MOSFET's: Part I - Effects of substrate impurity concentration," IEEE Trans. Electron Devices, vol. 41, no. 12, pp. 2357-2362, Dec. 1994. https://doi.org/10.1109/16.337449
  17. N. Serra, and D. Esseni, "Mobility enhancement in strained n-FinFETs: Basic insight and stress engineering," IEEE Trans. Electron Devices, vol. 57, no. 2, pp. 482-490, Feb. 2010. https://doi.org/10.1109/TED.2009.2037369
  18. M. -H. Bao, Micro Mechanical Transducers,1st ed., Elsevier Science, 2000, pp. 30-31.
  19. E. Ungersboeck, S. Dhar, G. Karlowatz, V. Sverdlov, H. Kosina, and S. Selberherr, "The effect of general strain on the band structure and electron mobility of silicon," IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2183-2190, Sep. 2007. https://doi.org/10.1109/TED.2007.902880
  20. K. Uchida, T. Krishnamohan, K. C. Saraswat, and Y. Nishi, "Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime," in IEDM Tech. Dig., 2005, pp. 1-4.