Browse > Article
http://dx.doi.org/10.5573/JSTS.2014.14.2.146

Temperature Dependence of Electron Mobility in Uniaxial Strained nMOSFETs  

Sun, Wookyung (Department of Electronic Engineering, Ewha Womans University)
Shin, Hyungsoon (Department of Electronic Engineering, Ewha Womans University)
Publication Information
JSTS:Journal of Semiconductor Technology and Science / v.14, no.2, 2014 , pp. 146-152 More about this Journal
Abstract
The temperature dependence of strain-enhanced electron mobility in nMOSFETs is investigated by using a self-consistent Schr$\ddot{o}$dinger-Poisson solver. The calculated results suggest that vertical compressive stress is more efficient to maintain the strain-enhanced electron mobility than longitudinal tensile stress in high temperature condition.
Keywords
Electron mobility; stress; strain; intravalley phonon mobility; intervalley phonon mobility; temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Uchida, M. Saitoh, and S. Kobayashi, "Carrier transport and stress engineering in advanced nanoscale transistors from (100) and (110) transistors to carbon nanotube FETs and beyond," in IEDM Tech. Dig., 2008, pp. 1-4.
2 M. V. Fischetti, F. Gamiz, and W. Hansch, "On the enhanced electron mobility in strained-silicon inversion layers," J. Appl. Phys., vol. 92, no. 12, pp. 7320-7324, Dec. 2002.   DOI
3 S. E. Thompson, M. Armstrong, C. Auth, S. Cea, R. Chau, G. Glass, T. Hoffman, J. Klaus, Z. Ma, B. Mcintyre, A. Murthy, B. Obradovic, L. Shifren, S. Sivakumar, S. Tyagi, T. Ghani, K. Mistry, M. Bohr, and Y. El-Mansy, "A logic nanotechnology featuring strained-silicon," IEEE Electron Device Lett., vol. 25, no. 4, pp. 191-193, Apr. 2004.   DOI
4 K. -W. Ang, K. -J. Chui, C. -H. Tung, N. Balasubramanian, M. -Fu. Li, G. S. Samudra, and Y. -C. Yeo, "Enhanced strain effects in 25-nm gate-length thin-body nMOSFETs with silicon-carbon source/drain and tensile-stress liner," IEEE Electron Device Lett., vol. 28, no. 4, pp. 301-304, Apr. 2007.   DOI
5 S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, "Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor fieldeffect transistors," J. Appl. Phys., vol. 80, no. 3, pp. 1567-1577, Aug. 1996.   DOI   ScienceOn
6 K. Masaki, C. Hamaguchi, K. Taniguchi, and M. Iwase, "Electron mobility in Si inversion layers," Japan. J. Appl. Phys., vol. 28, no. 10, pp. 1856-1863, Oct. 1989.   DOI
7 P. C. Huang, S. L. Wu, S. J. Chang, C. W. Kuo, C. Y. Chang, Y. T. Huang, Y. C. Cheng and O. Cheng, "Temperature dependence of electrical characteristics of strained nMOSFETs using stress memorization technique," IEEE Electron Device Lett., vol. 32, no. 7, pp. 835-837, Jul. 2011.   DOI
8 Y. Omura, T. Yamamura, and S. Sato, "Low-temperature behavior of phonon-limited electron mobility of sub-10-nm thick silicon-on-insulator metal-oxide-semiconductor field-effect transistor with (001) and (111) Si Surface channels," Japan. J. Appl. Phys., vol. 48, pp. 071204-1, Jul. 2009.   DOI
9 S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, "Importance of inter-valley phonon scattering on mobility enhancement in strained Si MOSFETs," in Proc. Int. Conf. SISPAD Tech., 1996, pp. 5-6.
10 T. -S. Chang, T. Y. Lu, and T. -S. Chao, "Temperature dependence of electron mobility on strained nMOSFETs fabricated by strain-gate engineering," IEEE Electron Device Lett., vol. 33, no. 7, pp. 931-933, Jul. 2012.   DOI
11 H. Shin, G. M. Yeric, A. F. Tasch and C. M. Maziar, "Physicaly-based models for effective mobility and local-field mobility of electrons in MOS inversion layers," Solid-State Electronics, vol. 34, pp. 545-552, Jun. 1991.   DOI   ScienceOn
12 D. K. Ferry, Semiconductors, 1st ed., Macmillan, N.Y, 2000, pp. 223-225.
13 C. -Y. Wu, and G. Thomas, "Two-dimensional electron-lattice scattering in thermally oxidized silicon surface-inversion layers," Phy. Rev. B, vol. 9, pp. 1724-1732, Feb. 1974.   DOI
14 R. Shah, and M. M. Souza, "Semi-empirical phonon scattering model," in Proc. World Congress on Engineering, 2009.
15 N. Serra, and D. Esseni, "Mobility enhancement in strained n-FinFETs: Basic insight and stress engineering," IEEE Trans. Electron Devices, vol. 57, no. 2, pp. 482-490, Feb. 2010.   DOI
16 M. -H. Bao, Micro Mechanical Transducers,1st ed., Elsevier Science, 2000, pp. 30-31.
17 E. Ungersboeck, S. Dhar, G. Karlowatz, V. Sverdlov, H. Kosina, and S. Selberherr, "The effect of general strain on the band structure and electron mobility of silicon," IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2183-2190, Sep. 2007.   DOI
18 K. Uchida, T. Krishnamohan, K. C. Saraswat, and Y. Nishi, "Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime," in IEDM Tech. Dig., 2005, pp. 1-4.
19 S. Takagi, T. Irisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, and N. Sugiyama, "Carrier-transport-enhanced channel CMOS for improved power consumption and performance," IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 21-39, Jan. 2008.   DOI
20 S. Takagi, A. Toriumi, M. Iwase, and H. Tango, "On the universality of inversionlayer mobility in Si MOSFET's: Part I - Effects of substrate impurity concentration," IEEE Trans. Electron Devices, vol. 41, no. 12, pp. 2357-2362, Dec. 1994.   DOI   ScienceOn