• Title/Summary/Keyword: 열팽창계수

Search Result 390, Processing Time 0.025 seconds

Measurement of Thermal Expansion Coefficient of Poly-Si Thin Film Using Microgauge (마이크로 게이지를 이용한 다결정 샐리콘 박막의 열팽창 계수 측정)

  • Chae, Jeong-Heon;Lee, Jae-Yeol;Gang, Sang-Won
    • Korean Journal of Materials Research
    • /
    • v.8 no.1
    • /
    • pp.85-91
    • /
    • 1998
  • 인이 높은 농도로 도핑되어진 LPCVD 다결정 실리콘 박막의 열팽창 계수를 마이크로 게이지법을 이용하여 측정하였다. 기존의 박막의 열팽창 계수 측정 법에서는 박막이 기판에 증착되어진 상태에서 측정이 이루어지므로, 기판의 탄성계수와 열팽창계수를 미리 알고 있어야 한다. 이에 비해 마이크로 게이지법에서는 박막의 열\ulcorner창 계수를 도출하기 위하여 기판의 탄성계수 값과 열팽창 계수 값을 필요로 하지 않는다는 장점이 있다. 마이크로 게이지법에서는 전류를 가할 경우 줄 발열에 의해 발생한 마이크로 게이지에의 변위를 측정하고, 그 때 계산된 마이크로 게이지의 평균 온도의 관계에서 열팽창 계수를 계산한다. 다결정 실리콘 박막의 열팽창 계수는 2.9 x $10^{-6}$$^{\circ}C$로 측정되었으며, 이 값들의 표준편차는 0.24x$10^{-6}$$^{\circ}C$였다.

  • PDF

Prediction of Thermal Expansion Coefficients for Fiber-Reinforced Composites by Direct Numerical Simulation (직접 수치 모사법을 이용한 섬유 강화 복합재료의 열팽창계수 예측)

  • Nam, Youn-Sic;Oh, Min-Hwan;Kim, Kwang-Sik;Cho, Jin-Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.771-777
    • /
    • 2007
  • In this paper, thermal expansion coefficients of fiber-reinforced composite materials are predicted by direct numerical simulation. From comparing the predicted results with experimental results, it is confirmed that direct numerical simulation gives similar results to the previously proposed methods while minimizing artificial assumptions. Additionally trend of variation in thermal expansion coefficients is investigated according to the fiber volume fraction.

Measurement and Evaluation of Thermal Expansion Coefficient for Warpage Analysis of Package Substrate (패키지 기판의 Warpage 해석을 위한 열팽창계수의 측정 및 평가)

  • Yang, Hee Gul;Joo, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1049-1056
    • /
    • 2014
  • Microelectronics components contain various materials with different coefficients of thermal expansion (CTE). Although a large amount of published data on the CTE of standard materials is available, it occasionally becomes necessary to measure this property for a specific actual material over a particular temperature range. A change in the temperature of a material causes a corresponding change in the output of the strain gage installed on the specimen because of not only the mechanical load but also the temperature change. In this paper, a detailed technique for CTE measurement based on these thermal characteristics of strain gages is proposed and its reliability is evaluated. A steel specimen, aluminum specimen, and copper specimen, whose CTE values are well known, were used in this evaluation. The proposed technique was successfully applied to the measurement of the CTE of a coreless package substrate composing of electronics packages.

Measurements of Thermal Expansion Coefficients in GRP Pipe (GRP 복합관의 열팽창계수 측정)

  • Oh, Jin-Oh;Yoon, Sung-Ho
    • Composites Research
    • /
    • v.25 no.1
    • /
    • pp.26-30
    • /
    • 2012
  • This study was focused on the measurement of thermal expansion coefficients for GRP pipe through strain gage circuits. First of all, thermal expansion coefficients of aluminum beam were measured to examine the validity of the suggested method by using various types of strain gage circuits. Thermal expansion coefficients of GRP pipes along axial and hoop directions were measured to investigate the effect of the location of strain gages, number of repeated measurements, and strain gage types with different thermal expansion coefficients on the thermal strains and the repeatability of measured results. According to the results, thermal expansion coefficients of GRP pipes along hoop direction were lower than those along axial direction due to the constraint effect of reinforced glass fibers on thermal strains along hoop direction. As measurements were repeated, thermal expansion coefficients of GRP pipes were slightly increased, but the degree of increase became smaller. Finally, the same thermal expansion coefficients were obtained irrespective of different types of strain gages with different thermal expansion coefficients if thermal strains of strain gages were compensated by using reference compensation specimen.

Characterization of Thermal Expansion Coefficients of Carbon/Epoxy Composite for Temperature Variation (탄소섬유 복합재료의 온도변화에 대한 열팽창계수 특성 변화 규명)

  • 김주식;윤광준
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.1-7
    • /
    • 1999
  • The change of the coefficients of thermal expansion(CTE) of Carbon/Epoxy was investigated for the temperature variation and a prediction model for the change of CTE was proposed. Elastic properties and CTEs in the principal material directions were measured in the range of room temperature to cure temperature and characterized as functions of temperature. By applying the characterized properties to the classical lamination theory, a computational method to predict the change of CTEs of a general laminate for temperature variation was proposed. the coefficients of thermal expansion of laminates with various stacking sequences were measured and compared with those predicted. Good agreements between the predicted results and the experimental data show that the c hanges of CTEs of a general laminate for temperature variation can be predicted well by using the proposed method.

  • PDF

Calculations of the Thermal Expansion Coefficient for Rock-Forming Minerals Using Molecular Dynamics (MD) Simulation (분자동역학(MD) 시뮬레이션을 이용한 조암광물의 열팽창 계수 산정)

  • 서용석;배규진
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.269-278
    • /
    • 2001
  • We describe the calculation of thermal expansion coefficients of $\alpha$-quartz, muscovite and albite using a MD simulation method. The selection of interatomic potentials is important for the MD calculation, and we used the 2-body interatomic potential function. The coefficients are calculated using a differential operation of the temperature dependence of the lattice constant obtained from the NPT-ensemble molecular dynamics simulation. Reasonable agreement is found between the analytical results and measured data.

  • PDF

Evaluation of the Coefficient of Thermal Expansion of Constituents in Composite Materials using an Inverse Analysis Scheme (역해석기법을 이용한 복합재료 구성성분의 열팽창계수 예측)

  • Lim, Jae Hyuk;Sohn, Dongwoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.393-401
    • /
    • 2014
  • In this paper, we propose an evaluation scheme of the coefficients of thermal expansion (CTE) of constituents in composite materials using an inverse analysis. The size of constituents typically is about a few micrometers, which makes the identification of material properties difficult as well as the measurement results inaccurate. The proposed inverse analysis scheme, which is combined with the Mori-Tanaka method for predicting an equivalent CTE of composite materials, provides the CTE of the constituents in a straightforward manner by minimizing the cost function defined in lamina scale with the steepest descent method. To demonstrate the effectiveness and accuracy of the proposed scheme, the CTEs of several fibers (glass fiber, P75, P100, and M55J) embedded in matrix are evaluated and compared with experimental results. Furthermore, we discuss the effects of uncertainty of laminar and matrix properties on the prediction of fiber properties.

Studies on Properties with Different Filler and Content in Pb-free Sealing Frit for Electronic Devices

  • An, Yong-Tae;Choe, Byeong-Hyeon;Ji, Mi-Jeong;Jang, U-Seok;Lee, Jun-Ho;Hwang, Hae-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.181-181
    • /
    • 2009
  • 전자부품용 Pb-free sealing frit의 열팽창계수를 기판에 matching 시키기 위하여 음의 열팽창계수를 가지고 있는 $\beta$-Eucryptite, $\beta$-Spodumene를 합성하여 filler로 첨가하였다. 합성된 filler는 저온소성용 유리프리트의 높은 열팽창계수를 조절하기 용이하고, 유리프리트와 복합화 하여 소성하면 낮은 열팽창계수로 인한 우수한 열충격 저항성을 갖는다. Filler로써 $\beta$-Eucryptite, $\beta$-Spodumene의 결정성을 향상시키기 위해 $1250^{\circ}C$에서 5 시간 동안 유지하는 합성공정을 3회 반복 진행한 후 XRD를 사용하여 결정성을 분석하였고, TMA를 이용하여 filler 첨가량에 따른 유리프리트의 열팽장계수의 변화를 측정하였다. 또한, filler 입도와 함량에 따른 melting 특성을 분석하기 위해 Pill test를 진행하였으며, soda-lime glass 기판과의 접합면을 SEM을 사용하여 관찰하였다.

  • PDF

Setting Shrinkage, Coefficient of Thermal Expansion, and Elastic Modulus of UP-MMA Based Polymer Concrete (UP-MMA 폴리머 콘크리트의 경화수축, 열팽창계수 및 탄성계수)

  • Yeon, Kyu-Seok;Yeon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.491-498
    • /
    • 2012
  • This study examines setting shrinkage, coefficient of thermal expansion, and elastic modulus of unsaturated polyester( UP)-methyl methacrylate(MMA) polymer concrete, which is generally used for repair of portland cement concrete pavement and manufacturing of precast products. In this study, a series of laboratory test were conducted with variables such as UP-MMA ratio, shrinkage reducing agent (SRA) content, and test temperature. The results showed that the setting shrinkage ranged from 29.2 to $82.6{\times}10^{-4}$, which was significantly affected by test temperature. Moreover, the findings revealed that the coefficient of thermal expansion, elastic modulus and ultimate strain of UP-MMA based polymer concrete ranged from 21.6 to $31.2{\times}10^{-6}/^{\circ}C$, 2.8 to $3.3{\times}10^4$ MPa, and 0.00381 to 0.00418, respectively. The results of this study will be used as important data for design and application of UP-MMA based polymer concrete.

Measurement of the Early-Age Coefficient of Thermal Expansion and Drying Shrinkage of Concrete Pavement (콘크리트포장의 초기 열팽창계수 및 건조수축 측정 연구)

  • Yoon, Young-Mi;Suh, Young-Chan;Kim, Hyung-Bae
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.117-122
    • /
    • 2008
  • Quality control of the concrete pavement in the early stage of curing is very important because it has a conclusive effect on its life span. Therefore, examining and analyzing the initial behavior of concrete pavement must precede an alternative to control its initial behavior. There are largely two influential factors for the initial behavior of concrete pavement. One is the drying shrinkage, and the other is the heat generated by hydration and thermal change inside the pavement depending on the change in the atmospheric temperature. Thus, the coefficient of thermal expansion and drying shrinkage can be regarded as very important influential factors for the initial behavior of the concrete. It has been a general practice up until now to measure the coefficient of thermal expansion from completely cured concrete. This practice has an inherent limitation in that it does not give us the coefficient of thermal expansion at the initial stage of curing. Additionally, it has been difficult to obtain the measurement of drying shrinkage due to the time constraint. This research examined and analyzed the early drying shrinkage of the concrete and measurements of the thermal expansion coefficients to formulate a plan to control its initial behavior. Additionally, data values for the variables of influence were collected to develop a prediction model for the initial behavior of the concrete pavement and the verification of the proposed model. In this research, thermal expansion coefficients of the concrete in the initial stage of curing ranged between $8.9{\sim}10.8{\times}10^{-6}/^{\circ}C$ Furthermore, the effects of the size and depth of the concrete on the drying shrinkage were analyzed and confirmed.

  • PDF