DOI QR코드

DOI QR Code

Antioxidative Effect and Active Component Analysis of Gnaphalium affine D. DON. Extracts

떡쑥 추출물의 항산화 효과 및 활성 성분 분석

  • Kim, Hae Soo (Department of Fine Chemistry, Cosmetic R&D Center, Nanobiocosmetic Lab., Seoul National University of Science and Technology) ;
  • Im, Na Ri (Department of Fine Chemistry, Cosmetic R&D Center, Nanobiocosmetic Lab., Seoul National University of Science and Technology) ;
  • Park, Jun Ho (Skin Cure Co., Ltd.) ;
  • Kim, Myeong-Ok (Skin Cure Co., Ltd.) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Nanobiocosmetic Lab., Seoul National University of Science and Technology)
  • 김해수 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 임나리 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 박준호 (스킨큐어(주)) ;
  • 김명옥 (스킨큐어(주)) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소)
  • Received : 2014.01.20
  • Accepted : 2014.02.11
  • Published : 2014.03.31

Abstract

In this work, the antioxidative effects and active component analysis of Gnaphalium affine D. DON. (G. affine) extracts were investigated. All experiments were performed with 70% ethanol extract, ethyl acetate fraction and aglycone fraction of the G. affine extract. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activity ($FSC_{50}$) of ethyl acetate fraction ($6.15{\mu}g/mL$) of the G. affine was higher than that of (+)-${\alpha}$-tocopherol ($8.89{\mu}g/mL$), which is known as a reference control. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of the 70% ethanol extract ($1.60{\mu}g/mL$), ethyl acetate fraction ($0.075{\mu}g/mL$) and aglycone fraction ($2.28{\mu}g/mL$) of extract of G. affine on ROS generated in $Fe^{3+}$-EDTA/$H_2O_2$ system using the luminol-dependent chemiluminescence assay were much higher than that of L-ascorbic acid ($6.88{\mu}g/mL$). The cellular protective effects of 70% ethanol extract (${\tau}_{50}$ = 52.0 min) and aglycone fraction of the extract (${\tau}_{50}$ = 60.6 min) on the $^1O_2$-induced cellular damage of human erythrocytes were exhibited the higher protective effect than (+)-${\alpha}$-tocopherol (${\tau}_{50}$ = 38.0 min), known as a lipophilic antioxidant. TLC and HPLC were used to analyse active components in the aglycone fraction of the extract. Results showed that luteolin and apigenin were main components. These results suggest that the G. affine extract can be applied to an effective antioxidant in scavenging ROS including radicals.

본 연구에서는 떡쑥 추출물의 항산화 활성 및 활성 성분을 확인하였다. 모든 실험은 떡쑥 추출물의 70% 에탄올 추출물, 에틸아세테이트 분획, 아글리콘 분획을 이용하여 진행하였다. DPPH (1,1-diphenyl-2-picrylhydrazyl)법을 이용한 free radical 소거활성(FSC50)은 에틸아세테이트 분획($6.15{\mu}g/mL$)이 비교물질인(+)-${\alpha}$-tocopherol ($8.89{\mu}g/mL$)보다 높게 나타났다. 루미놀 발광법을 이용한 $Fe^{3+}$-EDTA/$H_2O_2$계에서 생성된 활성산소종(reactive oxygen species, ROS)에 대한 떡쑥 추출물의 총 항산화능($OSC_{50}$)은 70% 에탄올 추출물의 경우 $1.60{\mu}g/mL$, 에틸아세테이트 분획의 경우 $0.075{\mu}g/mL$, 아글리콘 분획의 경우 $2.28{\mu}g/mL$로 비교물질인 L-ascorbic acid ($6.88{\mu}g/mL$)보다 큰 활성을 나타내었다. 사람 적혈구의 $^1O_2$로 유도된 세포손상에 대한 보호효과 실험에서 70% 에탄올 추출물과 아글리콘 분획의 ${\tau}50$$10{\mu}g/mL$에서 각각 52.0, 60.6 min으로 지용성 항산화제로 알려진 (+)-${\alpha}$-tocopherol (38.0 min)보다 더 큰 세포 보호 효과를 나타내었다. TLC와 HPLC를 이용한 아글리콘 분획의 성분분석 결과 luteolin, apigenin 등이 존재함을 확인하였다. 이상의 결과들로부터 떡쑥 추출물은 라디칼을 포함한 활성산소종을 소거하는 항산화제로서 응용될 수 있음을 시사한다.

Keywords

References

  1. E. H. Witt, P. Motchnik, and L. Packer, Evidence for UV light as an oxidative stressor in skin, eds. J. Fuchs and L. Packer, Oxidative Stress in Dermatology, 29, New York, Dekker (1993).
  2. I. Emerit, Free radicals and aging of the skin, eds. L. Emerit and B. Chance, Free radicals and aging, 328, Basel, Birkhauser (1992).
  3. S. N. Park, Antioxidative properties of baicalein, component from Scutellaria baicalensis Georgi and its application to cosmetics (I), J. Korean Ind. Eng. Chem., 14(5), 657(2003).
  4. S. N. Park, Effect of natural products on skin cells: action and suppression of reactive oxygen species, J. Soc. Cosmet. Scientists Korea, 25(2), 77 (1999).
  5. S. N. Park, Protective effect of isoflavone, genistein from soybean on singlet oxygen induced photohemolysis of human erythrocytes, Korean J. Food Sci. Technol., 35(3), 510 (2003).
  6. S. N. Park, Effects of flavonoids and other phenolic compounds on reactive oxygen-mediated biochemical reactions, Ph.D. Dissertation, Seoul National University (1989).
  7. V. Afonso, R. Champy, D. Mitrovic, P. I. Collin, and A. Lomri, Reactive oxygen species and superoxide dismutases : Role in joint diseases, Joint Bone Spine, 74, 324 (2007). https://doi.org/10.1016/j.jbspin.2007.02.002
  8. M. J. Davies, Reactive oxygen species, metalloproteinases, and plaque stability, Amer. Heart J., 23, 2382 (1998).
  9. D. Bagchi, M. Bagchi, E. A. Hassoun, and S. J. Stohs, In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides, Toxicology, 104, 129 (1995). https://doi.org/10.1016/0300-483X(95)03156-A
  10. T. F. Slater, Free radical mechanisms in tissue injury, Biochem. J., 222, 1 (1984). https://doi.org/10.1042/bj2220001
  11. S. I. Oh, Effect of melatonin on rat skeletal muscles of oophorectomized rat : oxidative stress and anti of oophorectomized rat : oxidative stress and antioxidative enzyme activities, Kor. J. Gerontol., 12, 1 (2002).
  12. S. I. Kim, Y. J. Ahn, E. H. Kim, and S. N. Park, Antibacterial and antioxidative activities of Quercus acutissima Carruth leaf extracts and isolation of active ingredients, J. Soc. Cosmet. Scientists Korea, 35(2), 159 (2009).
  13. H. Masaki, S. Sakaki, T. Atsumi, and H. Sakurai., Active oxygen scavenging activity of plants extracts, Biol. Pharm. Bull., 18, 162 (1995). https://doi.org/10.1248/bpb.18.162
  14. Z. Xi, W. Chen, Z. Wu, Y. Wang, P. Zeng, G. Zhao, X. Li, and L. Sun, Anti-complementary activity of flavonoids from Gnaphalium affine D. Don., Food Chem., 130, 165 (2012). https://doi.org/10.1016/j.foodchem.2011.07.025
  15. J. Li, D. Huang, W. Chen, Z. Xi, C. Chen, G. Huang and L. Sun, Two New Phenolic Glycosides from Gnaphalium affine D. Don and Their Anti-Complementary Activity, Molecules, 18, 7751 (2013). https://doi.org/10.3390/molecules18077751
  16. M. Aritomi, and T. Kawasaki, Dehydro-para-asebotin, a new chalconeglucoside in the flowers of Gnaphalium affine D. Don., Chem. Pharm. Bull., 22 (1974).
  17. M. Aritomi, M. Shimojoe, and T. Mazaki Aritomi, Chemical Constituents in Flowers of Gnaphalium affine D. Don., Yakugaku Zasshi, 84, 895 (1964). https://doi.org/10.1248/yakushi1947.84.9_895
  18. M. Morimoto, S. Kumeda, and K. Komai, Insect antifeedant flavonoids from Gnaphalium affine D. Don., J. Agric. Food Chem., 48, 1888 (2000). https://doi.org/10.1021/jf990282q
  19. P. Cuadra, J. B. Harborne, and P. G. Waterma, Increases in surface flavonols and photosynthetic pigments in Gnaphalium luteo-album in response to UV-B radiation, Phytochemistry, 45, 1377 (1997). https://doi.org/10.1016/S0031-9422(97)00183-0
  20. T. Iwashina, J. Kitajima, and T. Takemura, Flavonoids from the leaves of six Corylopsis species (Hamamelidaceae), Bio. System. Eco., 44, 361 (2012). https://doi.org/10.1016/j.bse.2012.06.017
  21. R. D. Torrenegra, S. Escarria, B. Raffelsberger, and H. Achenbachb, 5,7-dihydroxy-3,6,8-trimethoxyflavone from the flowers of Gnaphalium elegans, Phytochemistry, 19, 2795 (1980). https://doi.org/10.1016/S0031-9422(00)83978-3
  22. A. N. Shikova, M. Kundracikovac, T. L. Palama, O. N. Pozharitskaya, V. M. Kosman, V. G. Makarov, B. Galambosi, H. J. Kim, Y. P. Jang, Y. H. Choi, and R. Verpoorte, Phenolic constituents of Gnaphalium uliginosum L., Phytochemistry, 3, 45 (2010). https://doi.org/10.1016/j.phytol.2009.11.002
  23. Y. Aoshima, Y. Hasegawa, S. Hasegawa, A. Nagasaka, T. Kimura, S. Hashimoto, Y. Torii, and N. Tsukagoshi, Isolation of GnafC, a polysaccharide constituent of Gnaphalium affine, and synergistic effects of GnafC and ascorbate on the phenotypic expression of osteoblastic MC3T3-E1 cells, Bios. Biotechnol. Biochem., 67, 2068 (2003). https://doi.org/10.1271/bbb.67.2068
  24. W. C. Zeng, R. X. Zhu, L. R. Jia, H. Gao, and Y. Zheng, Chemical composition, antimicrobial and antioxidant activities of essential oil from Gnaphlium affine, Food Chem. Toxicol., 49, 1322 (2011). https://doi.org/10.1016/j.fct.2011.03.014
  25. T. L. Meragelman, G. L. Silva, E. Mongelli, and R. R. Gil, Ent-Pimarane type diterpenes from Gnaphalium gaudichaudianum, Phytochemistry, 62, 569 (2003). https://doi.org/10.1016/S0031-9422(02)00611-8
  26. A. Urza, R. Torres, C. Bueno, and L. Mend, Flavonoids and diterpenoids in the trichome resinous exudate from Pseudognaphalium cheiranthifolium, P. heterotrichium and P. vira vira., Biochemical Systematics and Ecology, 23, 459 (1995). https://doi.org/10.1016/0305-1978(95)00025-P
  27. Z. Xi, W. Chen, Z. Wu, Y. Wang, P. Zeng, G. Zhao, X. Li, and L. Sun, Chemical constituents of petro leum ether fractions of Gnaphalium affine D. Don., Acad. J. Sec. Mil. Med. Univ., 32, 311 (2011).

Cited by

  1. Antioxidant and Tyrosinase Inhibitory Activities of Dicaffeoylquinic Acid Derivatives Isolated from Gnaphalium Affine D. DON vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1058