DOI QR코드

DOI QR Code

비선형 증분동적해석을 통한 철골 중간모멘트 골조의 붕괴성능 평가

Collapse Capacity Evaluation of Steel Intermediate Moment Frames Using Incremental Dynamic Analysis

  • 신동현 (서울시립대학교 건축공학과) ;
  • 김형준 (서울시립대학교 건축공학과)
  • 투고 : 2013.12.20
  • 심사 : 2014.02.05
  • 발행 : 2014.03.30

초록

철골 중간모멘트골조는 강한 지반운동에 대하여 적합한 저항능력을 확보하기 위한 지진력저항시스템으로서 일반적으로 사용되고 있다. 하지만 국내의 대다수 중 저층 철골건축물은 내진설계가 도입되기 이전에 건설되었거나 현재의 내진설계기준의 요구조건을 준수하지 않은 것들로, 이러한 건물들이 가지는 내진성능에는 의문점이 존재한다. 이와 같은 문제점의 인식에 기반하여 본 연구에서는 국내 철골 중간 모멘트골조의 내진성능에 대한 정량적 제시를 목표로 우선 층수 종류, 지진에 대한 보유내력, 부재 연성도, 제진장치의 유무를 변수로 하여 표본 건물을 설계하였다. 표본 건물의 내진 성능과 붕괴 매커니즘은 비선형 정적해석과 증분동적해석으로부터 획득한 붕괴여유비와 붕괴확률을 이용하여 분석하였다. 해석결과를 통하여 현행 국내기준에 따라 내진설계된 신축건물은 설계지진에 대해 충분한 내진성능을 가졌으며, 이에 반해 구조부재의 연성저감이 발생하거나 낮은 설계 밑면전단력에 대한 저항력을 가진 기존건물의 경우에는 높은 붕괴확률을 가지며 목표로 한 내진성능을 만족시키지 못하는 것으로 나타났다. 이와 같은 내진성능을 충족시키지 못하는 내진설계 도입 이전의 건물에 대해서 에너지 소산장치를 통해 보강하게 되면 장치의 에너지 소산능력뿐만 아니라 소성힌지의 재분배를 통해 붕괴확률 및 내진성능이 신축건물 수준으로 향상되었다.

Steel intermediate moment frames (IMFs) have been generally used as seismic load resisting systems (SLRSs) of a building to provide resistances against strong ground shaking. However, most of low and mid-rise steel buildings in Korea were constructed during pre-seismic code era or before the introduction of well-organized current seismic codes. It has been recognized that the seismic performance of these steel IMFs is still questionable. In order to respond to such a question, this study quantitatively investigates the seismic capacities of steel IMFs. Prototype models are built according to the number of stories, the levels of elastic seismic design base shear and the ductilities of structural components. Also, the other prototype models employing hysteretic energy dissipating devices (HEDDs) are considered. The collapse mechanism and the seismic performance of the prototype models are then described based on the results obtained from nonlinear-static and incremental-dynamic analyses. The seismic performance of the prototype models is assessed from collapse margin ratio (CMR) and collapse probability. From the assessment, the prototype model representing new steel IMFs has enough seismic capacities while, the prototype models representing existing steel IMFs provide higher collapse probabilities. From the analytic results of the prototype models retrofitted with HEDDs, the HEDDs enhance the seismic performance and collapse capacity of the existing steel IMFs. This is due to the energy dissipating capacity of the HEDDs and the redistribution of plastic hinges.

키워드

참고문헌

  1. Architectural Institute of Korea (2000), Standard Design Loads for Buildings, Architectural Institute of Korea (in Korean, with English abstract).
  2. Architectural Institute of Korea (2005), Korean Building Code and Commentary, Architectural Institute of Korea (in Korean, with English abstract).
  3. Architectural Institute of Korea (2009), Korean Building Code and Commentary, Architectural Institute of Korea (in Korean, with English abstract).
  4. ASCE/SEI (2005), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineering.
  5. ASCE/SEI. (2007), Seismic Rehabilitation of Existing Buildings - ASCE Standard 41-07, American Society of Civil Engineers, Reston, Virginia.
  6. Carr, A. J. (2005), Ruaumoko Manual. User Manual for the 2-Dimensional Version: Ruaumoko2D Vol. 2, University of Canterbury.
  7. FEMA 356 (2000), Prestand and Commentary for the Seisnic Rehabilitation of Buildings, BSSC, 7.8-7.10.
  8. FEMA P695 (2008), Quantification of Building Seismic Performance Factors:ATC-63 Project Report, BSSC.
  9. Gupta, A., and Krawinkler, H. (1999), Seismic Demands for Performance Evaluation of Steel Moment Resisting Frame Structures (SAC Task 5.4.3), John A. Blume Earthquake Engineering Research Center Rep. No. 132, Stanford University.
  10. Jang, H. N., Lee, J. Y. (2007), Case Study of Earthquake Damage in Korea and Other Countries, Journal of the Korean Society of Civil Engineering, 55(4), 133-139 (in Korean).
  11. Kim, T. W., Eun, H. C., Min, K. H. (2009), Effect of Strong Column-Weak Beam Consideration to Behavior of Moment Frames, Proceeding of Earthquake Engineering Society of Korea, 2009 Spring Conference, 287-294 (in Korean, with English abstract).
  12. Kim, T. W. (2011), Seismic Design of Low-rise Steel Moment Frames in Korea, Journal of Earthquake Engineering Society of Korea, 15(1), 11-18 (in Korean, with English abstract). https://doi.org/10.5000/EESK.2011.15.1.011
  13. Korea Meteorological Administration (2013), 2012 Seismological Annual Report, Korea Meteorological Administration (in Korean).
  14. Kwon, K. H., Kim, M. H., Kim, H. J. (2013), Seismic Performance Assessment of Unreinforced Masonry Wall Buildings Using Incremental Dynamic Analysis, Journal of Korea Institute for Structural Maintenance Inspection, 17(3), 28-39 (in Korean, with English abstract). https://doi.org/10.11112/jksmi.2013.17.3.028
  15. Lee, H. H., Kim, S. I. (2010), Metallic Damper Shape and Cyclic Behavior for the Seismic Capacity Improvement of Building Structures, Journal of Korea Institute for Structural Maintenance and Inspection, 14(3), 123-130 (in Korean, with English abstract).
  16. Lignos D. G., Krawinkler H. (2011), Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading, Journal of Structural Engineering (ASCE), 137(11), 1291-1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376
  17. PEER (2006), PEER NGA Database, Pacific Earthquake Engineering Research Center, University of California, Berkeley, U.S.A., Available at : http://peer.berkeley.edu/nga/.
  18. PEER/ATC72-1 (2010), Pacific Earthquake Engineering Research Center / Applied Technology Council, Modeling and acceptance criteria for seismic design and analysis of tall buildings, Applied Technology Council, Redwood City, CA.
  19. Tsai, K. C., Cheng, H. W., Hong, C. P., and Su, Y. F. (1993), Design of steel triangular plate energy absorbers for seismic-resistant construction, Earthquake Spectra, 9(3), 505-528. https://doi.org/10.1193/1.1585727
  20. Vamvatsikos, D., and Cornell, C. A. (2002), Incremental Dynamic Analysis, Earthquake Engineering and Structural Dynamics, 31(3), 491-514. https://doi.org/10.1002/eqe.141