DOI QR코드

DOI QR Code

Character Region Detection Using Structural Features of Hangul & English Characters in Natural Image

자연영상에서 한글 및 영문자의 구조적 특징을 이용한 문자영역 검출

  • 오명관 (혜전대학교 디지털서비스과) ;
  • 박종천 (충북대학교 컴퓨터공학과)
  • Received : 2013.11.25
  • Accepted : 2014.03.06
  • Published : 2014.03.31

Abstract

We proposes the method to detect the Hangul and English character region from natural image using structural feature of Hangul and English Characters. First, we extract edge features from natural image, Next, if features are not corresponding to the heuristic rule of character features, extracted features filtered out and select candidates of character region. Next, candidates of Hangul character region are merged into one Hangul character using Hangul character merging algorithm. Finally, we detect the final character region by Hangul character class decision algorithm. English character region detected by edge features of English characters. Experimental result, proposed method could detect a character region effectively in images that contains a complex background and various environments. As a result of the performance evaluation, A proposed method showed advanced results about detection of Hangul and English characters region from natural image.

본 논문은 한글 및 영문자의 구조적 특징을 이용하여 자연영상에서 문자영역을 검출하는 기법을 제안하였다. 자연 영상에서 에지 특징 값을 추출하고 추출된 특징 값은 필터링을 수행하여 문자의 특징에 맞지 않는 특징 값을 제거하여 문자영역 후보를 선정한다. 선정된 문자영역 후보는 한글 자소 병합 알고리즘으로 하나의 문자로 병합하여 후보 문자영역으로 검출하고, 한글 문자 유형 판별 알고리즘으로 한글 문자영역 여부를 판별함으로서 한글 문자영역을 검출하고, 영문자는 영문자 에지 특징 값을 적용하여 영문자 영역을 검출한다. 실험결과, 복잡한 배경을 갖고 다양한 환경에서 촬영된 영상에서 한글 및 영문자 영역을 효과적으로 검출하였고, 제안한 문자영역 검출 방법은 향상된 검출 결과를 보여 주었다.

Keywords

References

  1. N. Ezaki, M. Bulacu, L. Schomaker: "Text detection from natural scene images: towards a system for visually impaired persons." In: Proc. of the 17th International Conference on Vol. 2, pp.683-686, 2004. DOI: http://dx.doi.org/10.1109/ICPR.2004.1334351
  2. Xiaoqing Liu and Jagath Samarabandu: "An Edge-Based Text Region Extraction Algorithm for Indoor Mobile Robot Navigation." In: International Journal of Signal Processing, Vol.3(4), pp.273-280, 2006. DOI: http://dx.doi.org/10.1109/ICMA.2005.1626635
  3. Kim, S., Kim D., Y. Ryu, Y., and Kim, G: "A Robust License-Plate Extraction Method under Complex Image Conditions," In: Proceedings of International Conference on Pattern Recognition, Vol. 3, pp.216-219, 2002.
  4. Smith, M. A. and T. Kanade: "Video Skimming for Quick Browsing Based on Audio and Image Characterization." Carnegie Mellon University, Technical Report CMU-CS-95-186, 1995.
  5. Chung-Mong Lee, A. Kankanhalli: "Automatic Extraction of Characters in Complex Scene Images." International Journal of Pattern Recognition and Artificial Intelligence, Vol.9(1), pp.67-82, 1995. DOI: http://dx.doi.org/10.1142/S0218001495000043
  6. Canny, J.: "A Computational Approach to Edge Detection. In: IEEE Transactions on Pattern Analysis and Machine Intelligence," Vol. PAMI-8, No. 6, pp.679-698, 1986. DOI: http://dx.doi.org/10.1109/TPAMI.1986.4767851
  7. Park, Jong Cheon. : "Detection Method of Character Region Using Hangul Structure from Natural Image, Department of Computer Engineering," Doctoral Thesis, University of Chungbuk National, 2011.
  8. Oh, In. Gwan.: "Study on the Extraction of Character and Special Character from Hangeul Documents with English," Master's Thesis, Department of Computer Science, University of Kwangwoon, 1993.
  9. C. Yi and Y. Tian : "Text String Detection from Natural Scenes by Structure-based Partition and Grouping." In : IEEE Transactions on Image Proc., PMID:21411405, 2011. DOI: http://dx.doi.org/10.1109/TIP.2011.2126586
  10. KAIST Scene Text Database, http://ai.kaist.ac.kr/home/DB/SceneText
  11. Lucas, S. M., A. Panaretos, L. Sosa, A. Tang, S. Wong and R. Young(2003), "ICDAR 2003 Robust Reading Competition," In 7th International Conference on Document Analysis and Recognition(ICDAR), pp.682-687, 2003.