DOI QR코드

DOI QR Code

Improved Unslotted IEEE 802.15.4 Algorithm for HAN in Smart Grids

스마트그리드 HAN을 위한 개선된 Unslotted IEEE 802.15.4 알고리즘

  • Hwang, Sung Ho (Division of Electronics, Information & Communication Engineering, Kangwon National University)
  • 황성호 (강원대학교 공학대학 전자정보통신공학부 정보통신공학전공)
  • Received : 2014.01.06
  • Accepted : 2014.03.06
  • Published : 2014.03.31

Abstract

There have been many studies on IEEE 802.15.4 for home area networks(HAN) in Smart Grids. Existing unslotted or slotted IEEE 802.15.4 has almost not met strict conditions of the U.S. Department Of Energy(DOE). This study proposed a improved algorithm that reduces collisions, delay time and changes in the delay time. For this purpose, numbers were given to nodes to make the transmission in the order of the node numbers. Since the probability of the occurrence of collisions would decrease compared to random transmission if the nodes were given numbers, Backoff time was set at 0. In the proposed Numbered-Unslotted-ZeroBackoff algorithm, when the packet size was 133 octets and less than 180 packets per second occurred, it was found that packet delivery ratio was over 99.99%, and that all the maximum delay, the mean delay and the minimum delay were less than 0.02 seconds. This paper could confirm that the algorithm proposed in this study met the strict conditions of the DOE.

스마트그리드 HAN(Home Area Networks)을 위한 IEEE 802.15.4에 대한 많은 연구들이 진행되고 있다. 기존의 Unslotted와 Slotted IEEE 802.15.4는 미국 DOE(Department of Energy)의 엄격한 조건을 거의 만족시키지 못하고 있다. 본 논문에서는 충돌과 지연시간을 줄이고 지연시간 변화도 적게 하는 개선된 알고리즘을 제안하였다. 이를 위해 노드에 번호를 부여하고, 노드 번호 순서에 따라 전송하도록 하였다. 노드에 번호를 부여하면 랜덤하게 전송하는 것보다는 충돌이 발생할 확률이 줄어들기 때문에 Backoff 시간을 0으로 설정하였다. 제안한 Numbered-Unslotted-ZeroBackoff 알고리즘에서, 패킷 크기가 133 octets이고, 초당 180개 이하의 패킷이 발생할 경우, 전달률 99.99% 이상과, 최대 지연, 평균 지연, 최소 지연 모두 0.02 초 이하의 지연이 발생함을 확인하였다. 본 논문에서 제안한 방식이 DOE의 엄격한 조건을 만족함을 확인할 수 있었다.

Keywords

References

  1. DEPARTMENT OF ENERGY, "COMMUNICATIONS REQUIREMENTS OF SMART GRID TECHNOLOGIES", October 5, 2010.
  2. V. Kounev, D. Tipper, "Advanced Metering and Demand Response Communication Performance in Zigbee based HANs", IEEE INFOCOM Workshop, pp.3405-3410, 2013. DOI: http://dx.doi.org/10.1109/INFCOMW.2013.6562904
  3. Institute of Electrical and Electronics Engineers, Inc., IEEE Std. 802.15.4-2006, "IEEE Standard for Information Technology - Telecommunica- tion and Information Exchange between Systems - Local and Metropolitan Area Networks - Specific Requirements - Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate Wireless Personal Area Networks (WPANs)", New York: IEEE Press. 2006.
  4. Network Simulator 2 - NS2, http://www.isi.edu /nsnam/ns/.
  5. D. Rohm, M. Goyal, H. Hosseini, A. D. Bashir, "Configuring Beaconless IEEE 802.15.4 Networks Under Different Traffic Loads", Advanced Information Networking and Applications, pp.921-928, 2009.
  6. Jianliang Zheng and Myung J. Lee, "A Comprehensive Performance Study of IEEE 802.15.4," Sensor Network Operations, IEEE Press, Wiley Interscience, Chapter 4, pp.218-237, 2006.
  7. Burchfield, T. R., Venkatesan, S., and Einer, D., "Maximizing throughput in Zigbee wireless networks through analysis, simulations and implementations", in Proc. of the Int. Workshop on Localized Algorithms and Protocols for Wireless Sensor Networks, pp.15-29, 2007.