DOI QR코드

DOI QR Code

3차원 격자요소를 활용한 콘크리트 구조부재의 스트럿-타이 모델 설계 방법 - (I) 방법의 제안

Strut-Tie Model Approach Associated with 3-Dimensional Grid Elements for Design of Structural Concrete - (I) Proposal of Approach

  • 김병헌 (현대엔지니어링 구조부) ;
  • 윤영묵 (경북대학교 건축토목공학부)
  • 투고 : 2012.12.15
  • 심사 : 2013.10.11
  • 발행 : 2014.04.01

초록

스트럿-타이 모델 방법은 응력교란영역을 갖는 콘크리트 구조부재의 설계에 효과적이다. 그러나 현행 설계기준의 스트럿-타이 모델 방법은 3차원 응력교란영역을 갖는 콘크리트 구조부재의 설계에 관한 명확한 개념 및 기준을 제시하지 못하고 있다. 이 연구에서는 현행 설계기준의 문제점을 개선하기 위한 새로운 스트럿-타이 모델 설계 방법을 제안하였다. 제안한 방법에서는 스트럿-타이 모델을 한 절점에서 주변의 인접한 모든 절점들로 힘을 전달할 수 있는 3차원 기본격자요소를 활용하여 형성한다. 또한 콘크리트 스트럿 및 절점영역의 유효강도를 이들이 위치한 곳의 철근의 영향 및 3차원 응력상태를 고려할 수 있는 수치해석적 방법을 사용하여 결정한다. 뿐 만 아니라 스트럿 및 타이의 하중전달능력을 격자요소의 최대단면적 개념을 도입하여 검토한다.

Although the strut-tie model approaches of current design codes are regarded as the valuable methods for designs of structural concretes with D-regions, the approaches have to be improved because of the uncertainties in terms of the concepts and provisions for designs of 3-dimensional structural concretes. To improve the uncertainties, a new strut-tie model approach is proposed in this study. In the proposed approach, the concepts of employing a 3-dimensional grid element allowing load transfers in all directions at a node to construct a strut-tie model, a numerical analysis approach to determine the effective strengths of concrete struts and nodal zones by reflecting the effects of reinforcing bars and 3-dimensional stress state, and maximum areas of struts and ties to examine their load carrying capacities are integrated into the strut-tie model approaches of current design codes.

키워드

참고문헌

  1. Ali, M. A. and White, R. N. (2001). "Automatic generation of truss model for optimal design of reinforced concrete structures." ACI Structural Journal, Vol. 98, No. 4, pp. 431-442.
  2. Alshegeir, A. (1992). Analysis and design of disturbed regions with strut-tie models, Ph.D. Dissertation, School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA.
  3. American Association of State Highway and Transportation Officials (2010). AASHTO LRFD bridge design specifications, 5th Edition, Washington D.C., USA.
  4. American Concrete Institute (2011). Building code requirements for structural concrete (ACI 318M-11) and commentary, Farmington Hills, Michigan, USA.
  5. American Concrete Institute (2002). Examples for the design for structural concrete with strut-and-tie models; SP-208, Reineck R. H. Eds, ACI Subcommittee 445-1, Farmington Hills, Michigan, USA.
  6. Bakir, P. G. and Boduroglu, H. M. (2005). "Mechanical behaviour and non-linear analysis of short beams using softened truss and direct strut & tie models." Engineering Structures, Vol. 27, No. 4, pp. 639-651. https://doi.org/10.1016/j.engstruct.2004.12.003
  7. Bergmeister, K., Breen, J. E., Jirsa, J. O. and Kreger, M. E. (1993). Detailing in structural concrete, Research Report 1127-3F, University of Texas at Austin, Texas, USA.
  8. Canadian Standards Association (2004). Design of concrete structures for buildings, A23.3-M04, Rexdale, Ontario, Canada.
  9. Comite Euro-International du Beton (2010). CEP-FIP model code 2010, International Federation for Structural Concrete (fib), Lausanne, Switzerland.
  10. Foster, S. J. and Gilbert, R. I. (1998). "Experimental studies on highstrength concrete deep beams." ACI Structural Journal, Vol. 95, No. 4, pp. 382-390.
  11. Ha, T. H. and Hong, S. G. (2005). "Effect of diagonal cracking on the strength of concrete strut in RC members." Proceedings of the Korean Concrete Institute, Vol. 17, No. 1, pp. 383-386 (in Korean).
  12. Hong, S. G. (2000). "Strut-and-tie models and failure mechanisms for bar development in tension-tension-compression nodal zone." ACI Structural Journal, Vol. 97, No. 1, pp. 111-121.
  13. Hwang, S. J., Lu, W. Y. and Lee, H. J. (2000). "Shear strength prediction for deep beams." ACI Structural Journal, Vol. 97, No. 3, pp. 367-376.
  14. Kim, B. H. and Yun, Y. M. (2011). "An indeterminate strut-tie model and load distribution ratio for RC deep beams - (I) Model & Load Distribution Ratio." Advances in Structural Engineering, Vol. 14, No. 6, pp. 1031-1042. https://doi.org/10.1260/1369-4332.14.6.1031
  15. Korean Concrete Institute (2012). Design specifications for structural concrete, Kimoondang, Seoul, Korea (in Korean).
  16. Kwak, H. G. and Noh, S. H. (2006). "Determination of strut-and-tie models using evolutionary structural optimization." Engineering Structures, Vol. 28, No. 10, pp. 1440-1449. https://doi.org/10.1016/j.engstruct.2006.01.013
  17. Lee, W. S. (2007). Strut-tie model approach using evolutionary structural optimization for reinforced concrete structural members, Ph.D. Dissertation, Kyungpook National University, Daegu, Korea, p. 210 (in Korean).
  18. Leu, L. J., Huang, H. W., Chen, C. S. and Liao, Y. P. (2006). "Strut-and-tie design methodology for three-dimensional reinforced concrete structures." Journal of Structural Engineering, Vol. 132, No. 6, pp. 929-938. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:6(929)
  19. Liang, Q. Q., Xie, Y. M. and Steven, G. P. (2001). "Generating optimal strut-and-tie models in prestressed concrete beams by performance-based optimization." ACI Structural Journal, Vol. 98, No. 2, pp. 226-232.
  20. Liang, Q. Q., Uy, B. and Steven, G. P. (2002). "Performance-based optimization for strut-and-tie modeling of structural concrete." Journal of Structural Engineering, Vol. 128, No. 6, pp. 815-823. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:6(815)
  21. Park, H. G., Kim, Y. G. and Eom, T. S. (2005). "Direct inelastic strut-tie model using secant stiffness." Journal of the Korean Concrete Institute, Vol. 17, No. 2, pp. 201-212 (in Korean). https://doi.org/10.4334/JKCI.2005.17.2.201
  22. MacGregor, J. G. (1997). Reinforced concrete - Mechanics and Design, 3rd Edition, Prentice Hall, Englewood Cliffs, New Jersey, USA.
  23. MacGregor J. G. and Wight J. K. (2005). Reinforced concrete: Mechanics and Design, 4th Edition, Pearson Prentice Hall, Upper Saddle River, NJ, USA.
  24. Tjhin, T. N. and Kuchma, D. A. (2002). "Computer-based tools for design by strut-and-tie method: Advances and Challenges." ACI Structural Journal, Vol. 99, No. 5, pp. 586-594.
  25. Yun, Y. M. (2000). "Nonlinear strut-tie model approach for structural concrete." ACI Structural Journal, Vol. 97, No. 4, pp. 581-590.
  26. Yun, Y. M. (2005). "Effective strength of concrete strut in strut-tie model (I): Methods for Determining Effective Strength of Concrete Strut." Journal of the Korean Society of Civil Engineers, Vol. 25, No. 1A, pp. 49-59 (in Korean).
  27. Yun, Y. M. (2006). "Strength of two-dimensional nodal zones in Strut-Tie models." Journal of Structural Engineering, ASCE, Vol. 132, No. 11, pp. 1764-1783. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:11(1764)
  28. Yun Y. M. and Kim B. H. (2008). "A 2-Dimensional grid strut-tie model approach for structural concrete." Journal of Structural Engineering, ASCE, Vol. 134, No. 7, pp. 1199-1214. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:7(1199)
  29. Yun, Y. M. and Ramirez, J. A. (1996). "Strength of struts and nodes in strut-tie model." Journal of Structural Engineering, ASCE, Vol. 122, No. 1, pp. 20-29. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:1(20)
  30. Willam, K. J. and Warnke, E. P. (1974). "Constitutive model for the triaxial behavior of concrete." Proc., International Association of Bridge Structures, Vol. 19, pp. 1-30.