• Title/Summary/Keyword: Effective strength

Search Result 3,775, Processing Time 0.033 seconds

Prediction of Ultimate Strength of Concrete Deep Beams with an Opening Using Strut-and-Tie Model (스트럿-타이 모델에 의한 개구부를 갖는 깊은 보의 극한강도 예측)

  • 지호석;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.189-194
    • /
    • 2001
  • In this study, ultimate strength of concrete deep beams with an opening is predicted by using Strut-and-Tie Model with a new effective compressive strength. First crack occurs around an opening by stress concentration due to geometric discontinuity. This results in decreasing ultimate strength of deep beams with an opening compared with general deep beams. With fundamental notion that ultimate strength of deep beam with an opening decreases as a result of reduction in effective compressive strength of a concrete strut, an equivalent effective compressive strength formula is proposed in order to reflect ultimate strength reduction due to an opening located in a concrete strut. An equivalent effective compressive strength formula which can reflect opening size and position is added to a testified algorithm of predicting ultimate strength of concrete deep beams. Therefore, ultimate strength of concrete deep beam with an opening is predicted by using a simple and rational STM algorithm including an equivalent effective compressive strength formula, not by finite element analysis or a former complex Strut-and-Tie Model

  • PDF

Effect of Effective Compressive Strength of Concrete Strut on Structural Concrete Design (콘크리트 스트럿의 유효강도가 콘크리트 부재의 설계에 미치는 영향)

  • 윤영묵;석철호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.241-246
    • /
    • 2000
  • In the strut-tie model design of structural concrete, the importance of the effective strength of concrete strut has been overlooked by many practitioners. The authors believe that the effective strength of concrete strut is an important factor not only in determining steel tie forces but also in verifying the nodal zone strength and geometric compatibility condition of a selected strut-tie model. This study evaluate the effect of the effective strength of concrete strut on structural concrete design by applying the different effective strut strengths to the strut-tie model design of a post-tensioned anchorage zone and a continuous concrete deep beam.

  • PDF

Failure characteristics of columns intersected by slabs with different compressive strengths

  • Choi, Seung-Ho;Hwang, Jin-Ha;Han, Sun-Jin;Kang, Hyun;Lee, Jae-Yeon;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.435-443
    • /
    • 2020
  • The objective of this study was to determine the effective compressive strength of a column-slab connection with different compressive strengths between the column and slab concrete. A total of eight column specimens were fabricated, among which four specimens were restrained by slabs while the others did not have any slab, and the test results were compared with current design codes. According to ACI 318, the compressive strength of a column can be used as the effective compressive strength of the column-slab connection in design when the strength ratio of column concrete to slab concrete is less than 1.4. Even in this case, however, this study showed that the effective compressive strength decreased. The specimen with its slab-column connection zone reinforced by steel fibers showed an increased effective compressive strength compared to that of the specimen without the reinforcement, and the interior column specimens restrained with slabs reached the compressive strength of the column.

Optimization of the Paper Making Raw Materials for Improvement of the Internal Bonding Strength of Printing Paper (내부 결합 강도 개선을 위한 인쇄용지 제조 최적화 연구)

  • Kim, Byung-Hun
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.3
    • /
    • pp.35-43
    • /
    • 2012
  • Internal bonding strength of printing paper was increased with sea-algae pulp treatment. Spacially, 9% contents sea-algae pulp treatment in the hardwood pulp are more effective than in the softwood pulp. Most effective mixture ratio of the raw matrials for improvement of the internal bonding strength are softwood pulp 30%, hardwood pulp 70%, sea-algae pulp 9%. Internal bonding strength is effective in more sea-algae pulp contents and softwood pulp contents and wetness.

An Experimental Study on the Flexural Rigidity of Reinforced High Strength Concrete Beams (고강도철근콘크리트 보의 휨강성에 관한 실험적 연구)

  • 고만영;김상우;김용부
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.71-78
    • /
    • 2000
  • This paper presents a study on the flexural rigidity of reinforced high strength concrete beams. Thirty six beams with different compressive strength of concrete, tensile reinforcement ratio, compressive reinforcement ratio, and pattern of loadings(1 point loading and 2 points loading) were tested to evaluate the effective moment of inertia. According to the experimental results, the eqation(1) proposed by ACI code for the effective moment of inertia overestimated that of simply supported reinforced high strength concrete beams. Thus, in this paper, an empirical equation(3) is proposed as a lower bound of 90% confidence limit to estimate the effective moment of inertia of simply supported reinforced high strength concrete beams.

Strength model for square concrete columns confined by external CFRP sheets

  • Benzaid, Riad;Mesbah, Habib Abdelhak
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.111-135
    • /
    • 2013
  • An experimental study has been carried out on square plain concrete (PC) and reinforced concrete (RC) columns strengthened with carbon fiber-reinforced polymer (CFRP) sheets. A total of 78 specimens were loaded to failure in axial compression and investigated in both axial and transverse directions. Slenderness of the columns, number of wrap layers and concrete strength were the test parameters. Compressive stress, axial and hoop strains were recorded to evaluate the stress-strain relationship, ultimate strength and ductility of the specimens. Results clearly demonstrate that composite wrapping can enhance the structural performance of square columns in terms of both maximum strength and ductility. On the basis of the effective lateral confining pressure of composite jacket and the effective FRP strain coefficient, new peak stress equations were proposed to predict the axial strength and corresponding strain of FRP-confined square concrete columns. This model incorporates the effect of the effective circumferential FRP failure strain and the effect of the effective lateral confining pressure. The results show that the predictions of the model agree well with the test data.

Concrete Shear Strength of HIRC Beams Reinforced with a SMA

  • Lee, Seung Jo;Park, Jung Min
    • Architectural research
    • /
    • v.20 no.3
    • /
    • pp.75-82
    • /
    • 2018
  • The aim of the study is to evaluate the concrete shear strength and structural behavior of two general beams and eight shape memory alloys (SMAs)-reinforced beams under the flexural test. This work compares the existing reference formula for concrete shear strength with test result to provide the basic data for the design of highly intelligent reinforced concrete (hereinafter, HIRC) beams. The evaluation of the concrete shear strength was performed with effective depth (d=65, 70, 80), SMA diameter change (ø=2.0, 2.5) as the main variables of the specimens. For the relationship between the effective depth and the $V_{\exp}/V_{cal}$, the test result shows that the concrete shear strength gradually approaches 1.0 as the effective depth length increase. For the AIJ formula, the specimens are approached evenly for comparison between $V_{\exp}/V_{cal}$ and the by-product (garnet, fly-ash) reinforced specimen; however, other formulas indicate a deviation.

Fatigue Assessment of High Strength Steel with Butt Welded Joints for the Root Gap Difference (고강도강 맞대기 용접 시험편의 루트갭 변경에 따른 피로강도 평가)

  • Kim, Ho-Jung;Kang, Sung-Won;Kim, Myung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.56-61
    • /
    • 2011
  • In this study, a series of fatigue tests was conducted to evaluate fatigue strength for the root gap difference with high strength steel with butt welded joints. A finite element analysis using effective notch stress method was also performed to compare effective notch factors each other with butt welded specimens made by copper backing. The results of fatigue tests were classified according to the root gap difference. Fatigue life of butt welded specimens is presented for determining the root gap of high strength steel with butt welded joints in terms of fatigue strength. Then effective notch stress was applied to interpret fatigue strength of butt welded specimen model which is reflected actual measured dimensions. As a result, fatigue strength of high strength steel with butt welded specimens is increased by root gap gets longer in length.

Effects of Lumbar Stabilization Exercise on Lumbar and Lower Extremity Strength of the Elderly women (요부안정화운동이 여성 노인의 요부 및 하지 근력에 미치는 영향)

  • Hwang, Byeong-Jun;Kim, Jong-Woo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.3
    • /
    • pp.267-275
    • /
    • 2011
  • Objective : This study aims to examine how lumbar stabilization exercise and resistive exercise affect lumbar and lower extremity muscular strength of the aged. Method : Randomly selected 15 female senior citizens aged 65 or older at S, Y, and J senior citizens' center located in D city who meet the requirements for the study were divided into a resistive exercise group of 7 and a stabilization exercise group of 8 for which 60-minute-exercise sessions were administered three times a week for 12 weeks. Measuring lumbar and lower extremity muscular strength was measured six weeks and 12 weeks after exercise, respectively. Results : First, both resistive exercises and stabilization exercises are effective to improve lumbar muscular strength. Second, resistive exercise is effective to improve flexural muscle strength as well as lower extremity muscular strength, and stabilization exercise is effective for both flexion and extensor muscle strength. Conclusion : The 12 week lumbar stabilization exercise program appeared to be effective to improve lumbar and lower extremity muscular strength of the aged. This indicates that applying this program to identify and prevent frequent risk factors of falling can lead to the prevention of secondary problem factors of falling accidents.

Estimation of seismic effective energy based parameter

  • Nemutlu, Omer Faruk;Sari, Ali;Balun, Bilal
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.785-799
    • /
    • 2022
  • The effect of earthquakes in earthquake resistant structure design stages is influenced by the highest ground acceleration value, which is generally a strength-based approach in seismic codes. In this context, an energy-oriented approach can be suggested as an alternative to evaluate structure demands. Contrary to the strength-based approach, the strength and displacement demands of the structure cannot be evaluated separately, but can be evaluated together. In addition, in the energy-oriented approach, not only the maximum effects of earthquakes are taken into account, but also the duration of the earthquake. In this respect, it can be said that the use of energy-oriented earthquake parameters is a more rational approach besides being an alternative. In this study, strength and energy-oriented approaches of earthquake parameters of 11 different periods of single degree of freedom systems were evaluated over 28 different earthquake situations. The energy spectra intended to be an alternative to the traditional acceleration spectra were created using the acceleration parameter equivalent to the input energy. Two new energy parameters, which take into account the effective duration of the earthquake, are proposed, and the relationship between the strength-oriented spectral acceleration parameters and the energy parameters used in the literature is examined by correlation study. According to the results obtained, it has been seen that energy oriented earthquake parameters, which give close values in similar period situations, will be a good alternative to strength oriented earthquake parameters. It was observed that the energy parameters were affected by the effective duration of the earthquake, unlike the strength-based parameters. It has been revealed that the newly proposed energy parameters considering the effective duration give good correlations. Finally, it was concluded that the energy parameters can be used in the design, and the newly proposed effective energy parameters can shorten the analysis durations.