References
- Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 125-134.
- Daniels, M. J. and Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data, Biometrika, 89, 553-566. https://doi.org/10.1093/biomet/89.3.553
- Daniels, M. J. and Pourahmadi, M. (2009). Modeling repeated count data subject to informative dropout, Journal of Multivariate Analysis, 100, 2352-2363. https://doi.org/10.1016/j.jmva.2009.04.015
- Daniels, M. J. and Zhao, Y. D. (2003). Modelling the random effects covariance matrix in longitudinal data, Statistics in Medicine, 22, 1631-1647. https://doi.org/10.1002/sim.1470
- Fitzmaurice, G. M. and Laird, N. M. (1993). A likelihood-based method for analysing longitudinal binary responses, Biometrika, 80, 141-151. https://doi.org/10.1093/biomet/80.1.141
- Heagerty, P. J. (1999). Marginally specified logistic-normal models for longitudinal binary data, Biometrics, 55, 688-698. https://doi.org/10.1111/j.0006-341X.1999.00688.x
- Heagerty, P. J. (2002). Marginalized transition models and likelihood inference for longitudinal categorical data, Biometrics, 58, 342-351. https://doi.org/10.1111/j.0006-341X.2002.00342.x
- Heagerty, P. J. and Kurland, B. F. (2001). Misspecified maximum likelihood estimates and generalized linear mixed models, Biometrika, 88, 973-985. https://doi.org/10.1093/biomet/88.4.973
- Kim, J., Kim, E., Yi, H., Joo, S., Shin, K., Kim, J., Kimm, K., and Shin, C. (2006). Short-term incidence rate of hypertension in Korea middle-aged adults. Journal of Hypertension, 24, 2177-2182. https://doi.org/10.1097/01.hjh.0000249694.81241.7c
- Lee, K. and Daniels, M. J. (2007). A Class of Markov models for longitudinal ordinal data, Biometrics, 63, 1060-1067. https://doi.org/10.1111/j.1541-0420.2007.00800.x
- Lee, K. and Daniels, M. J. (2008). Marginalized models for longitudinal ordinal data with application to quality of life studies, Statistics in Medicine, 27, 4359-4380. https://doi.org/10.1002/sim.3352
- Lee, K., Joo, Y., Yoo, J. K. and Lee, J. (2009). Marginalized random effects models for multivariate longitudinal binary data, Statistics in Medicine, 28, 1284-1300. https://doi.org/10.1002/sim.3534
- Lee, K. and Mercante, D. (2010). Longitudinal nominal data analysis using marginalized models, Computational Statistics and Data Analysis, 54, 208-218. https://doi.org/10.1016/j.csda.2009.08.005
- Lee, K., Kang, S., Liu, X. and Seo, D. (2011). Likelihood-based approach for analysis of longitudinal nominal data using marginalized random effects models, Journal of Applied Statistics, 38, 1577-1590. https://doi.org/10.1080/02664763.2010.515675
- Lee, K., Lee, J., Hagan, J. and Yoo, J. K. (2012). Modeling the random effects covariance matrix for generalized linear mixed models, Computational Statistics and Data Analysis, 56, 1545-1551. https://doi.org/10.1016/j.csda.2011.09.011
- Lee, K., Daniels, M. J. and Joo, Y. (2013). Flexible marginalized models for bivariate longitudinal ordinal data, Biostatistics, 14, 462-476. https://doi.org/10.1093/biostatistics/kxs058
- Pan, J. and MacKenzie, G. (2003). On modelling mean-covariance structures in longitudinal studies, Biometrika, 90, 239-244. https://doi.org/10.1093/biomet/90.1.239
- Pan, J. and MacKenzie, G. (2006). Regression models for covariance structures in longitudinal studies, Statistical Modelling, 6, 43-57. https://doi.org/10.1191/1471082X06st105oa
- Pinheiro, J. D. and Bates, D. M. (1996). Unconstrained parameterizations for variance-covariance matrices, Statistics and Computing, 6, 289-296. https://doi.org/10.1007/BF00140873
- Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation, Biometrika, 86, 677-690. https://doi.org/10.1093/biomet/86.3.677
- Pourahmadi, M. (2000). Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix, Biometrika, 87, 425-435 https://doi.org/10.1093/biomet/87.2.425
- Pourahmadi, M. and Daniels, M. J. (2002). Dynamic conditionally linear mixed models for longitu-dinal fata, Biometrics, 58, 225-231. https://doi.org/10.1111/j.0006-341X.2002.00225.x
- Wang, Y. and Daniels, M. J. (2013). Bayesian modeling of the dependence in longitudinal data via partial autocorrelations and marginal variances, Journal of Multivariate Analysis, 116, 130-140. https://doi.org/10.1016/j.jmva.2012.11.010
Cited by
- ARMA Cholesky factor models for the covariance matrix of linear models vol.115, 2017, https://doi.org/10.1016/j.csda.2017.05.001
- Dynamic linear mixed models with ARMA covariance matrix vol.23, pp.6, 2016, https://doi.org/10.5351/CSAM.2016.23.6.575
- Negative binomial loglinear mixed models with general random effects covariance matrix vol.25, pp.1, 2018, https://doi.org/10.29220/CSAM.2018.25.1.061