Abstract
Foods contain various nutrients such as carbohydrates, protein, oil, vitamins, and minerals. Among them, carbohydrates, protein, and oil are the main constituents of foods. Usually, these constituents are analyzed by the Kjeldahl and Soxhlet method and so on. However, these analytical methods are complex, costly, and time-consuming. Thus, this study aimed to rapidly and effectively analyze carbohydrate, protein, and oil contents with near-infrared reflectance spectroscopy (NIRS). A total of 517 food samples were measured within the wavelength range of 400 to 2,500 nm. Exactly 412 food calibration samples and 162 validation samples were used for NIRS equation development and validation, respectively. In the NIRS equation of carbohydrates, the most accurate equation was obtained under 1, 4, 5, 1 (1st derivative, 4 nm gap, 5 points smoothing, and 1 point second smoothing) math treatment conditions using the weighted MSC (multiplicative scatter correction) scatter correction method with MPLS (modified partial least square) regression. In the case of protein and oil, the best equation were obtained under 2, 5, 5, 3 and 1, 1, 1, 1 conditions, respectively, using standard MSC and standard normal variate only scatter correction methods with MPLS regression. Calibrations of these NIRS equations showed a very high coefficient of determination in calibration ($R^2$: carbohydrates, 0.971; protein, 0.974; oil, 0.937) and low standard error of calibration (carbohydrates, 4.066; protein, 1.080; oil, 1.890). Optimal equation conditions were applied to a validation set of 162 samples. Validation results of these NIRS equations showed a very high coefficient of determination in prediction ($r^2$: carbohydrates, 0.987; protein, 0.970; oil, 0.947) and low standard error of prediction (carbohydrates, 2.515; protein, 1.144; oil, 1.370). Therefore, these NIRS equations can be applicable for determination of carbohydrates, proteins, and oil contents in various foods.
식품의 3대 영양소인 탄수화물, 단백질 및 지방의 일반적인 분석 방법은 Kjeldahl 및 Soxhlet 시험법과 같은 기존의 화학 분석 방법으로 분석하였다. 그러나 이러한 분석 방법은 시료의 전처리 과정이 필요하고 많은 비용과 분석 시간이 소모되며 복잡한 추출과정을 거친다는 단점이 있다. 따라서 본 연구에서는 국내 유통 식품 및 농산물 자원에 함유된 탄수화물, 단백질 및 지방의 함량을 근적외 분광분석법(near-infrared reflectance spectroscopy, NIRS)으로 신속하고 정확하게 동시에 측정할 수 있는 방법을 검토하였다. 분석시료는 517종의 다양한 식품 시료를 예측모델 개발용(calibration set) 412종과 예견치 분석용(validation set) 162종으로 구분하여 사용하였다. 기존의 화학 분석 방법에 의해 측정된 성분들의 분석 결과와 근적외 스펙트럼 데이터간의 상관관계를 조사하여 각 성분별 예측모델을 검토하였으며, 변형부분최소자승법(MPLS) 및 다양한 수처리와 산란보정을 이용한 결과, 탄수화물, 단백질 및 지방의 산란방식은 각각 weighted MSC, standard MSC 및 SNV only로 수처리는 각각 1차 미분(1st derivative, 4 nm gap, 5 points smoothing, 1 point second smoothing), 2차 미분(2, 5, 5, 3) 및 1차 미분(1, 1, 1, 1)을 적용하여 예측모델을 검토한 결과 $R^2$값이 0.971, 0.974 및 0.937로 높고 SEC값은 4.066, 1.080 및 1.890으로 낮은 최적의 예측모델을 개발하였다. 세 성분의 최적 예측모델에 의한 상관도와 잔차 히스토그램을 검토한 결과 세 성분 모두 근적외 분광분석법 예측모델로 적합함을 확인할 수 있었으며, 최적의 예측모델을 미지의 식품 시료 162종에 적용한 결과, 탄수화물, 단백질 및 지방의 $r^2$(SEP)값은 0.987(2.515), 0.970(1.144) 및 0.947(1.370)로 $r^2$값은 높으며 SEP값은 낮은 양호한 양상을 나타내었다. 그러나 지방의 결정계수($R^2$, $r^2$)값은 탄수화물, 단백질에 비해 다소 낮은 양상을 나타내므로 추후 식품 검체에 적용 시 탄수화물 및 단백질 성분에 비해 예측결과의 정확성이 다소 낮을 수 있다고 판단되어진다. 이상의 결과에서 전처리 단계에서 복잡한 추출과정, 많은 비용소모, 분석시간 및 고도의 분석기술을 요하는 기존 습식 화학분석 방법의 단점을 보완하고자 검토되었던 근적외 분광분석법은 다량의 식품분석 시료를 분석하기에는 매우 효율적이라고 생각되며, 이런 점들을 고려해 보면 근적외 분광분석 예측모델들은 추후에 미지 식품시료에 함유된 탄수화물, 단백질 및 지방의 기존 분석법을 대체하여 편리하고 빠르게 함량을 예측 가능할 것으로 판단된다.