DOI QR코드

DOI QR Code

Analysis of Science Educational Contents of Singapore, Canada and US Focused on the Integrated Concepts

통합개념을 중심으로 한 싱가포르, 캐나다와 미국의 과학교육과정 내용 요소 분석

  • Received : 2013.11.07
  • Accepted : 2014.02.24
  • Published : 2014.02.28

Abstract

The feasibility of integrated concepts as a key element in designing integrated science curriculum has been investigated by analysing science contents included in performance expectations stated at different grades. The science curriculum of Singapore and the state of Ontario in Canada, and next generation of science standard (NGSS) were selected. Each of them presents theme, fundamental concepts, and crosscutting concepts, which has the characteristics of integrated concepts proposed in the study. Analysis showed that theme, fundamental concepts, and crosscutting concepts were influenced by the characteristics of each curriculum. In addition, science contents related to integrated concepts at different grades varied with the nature of integrated concepts. Based on results, some suggestions were made. First, the total number of integrated concepts should be considered for designing integrated curriculum. Second, the nature of integrated concepts and science contents associated with the integrated concepts should be considered. The integrated concepts should be vast and deep enough in the meaning to contain various content knowledge of different science domains. Third, it should be considered that how the integrated concepts have to be presented at different grades.

본 연구에서는 싱가포르 과학교육과정의 주제(theme)와 캐나다 온타리오 주의 과학과 기술 교육과정에 제시되어 있는 본질적 개념(fundamental concepts), 미국의 과학교육내용표준(NGSS, Next Generation Science Standards)에 제시되어 있는 학문 간 교차개념(crosscutting concepts)을 살펴보고, 통합개념과 관련된 각 국의 성취목표에 어떤 과학 내용 요소들이 포함되어 있으며, 학년 별로 어떻게 구성되어 있는지 분석하였다. 분석 결과, 각 국에서 제시하고 있는 통합개념은 그 나라 교육과정의 특성을 반영하며, 통합개념의 특성에 따라 통합개념에 포함되는 과학 내용 요소들은 달라질 수 있다는 것과 학년 별로 제시되는 통합개념에는 차이가 있음을 알 수 있었다. 이를 바탕으로 통합개념을 중심으로 통합교육과정을 설계할 때 고려해야 하는 몇 가지 사항을 다음과 같이 제안할 수 있다. 주요 과학 내용을 포함해야 하는 통합개념의 수는 적정하게 선정되어야 하며, 통합개념이 의미하는 바를 명확히 규정하고 해당 통합개념에 어떤 분과적인 내용 요소들이 포함될 수 있는지 신중하게 검토하면서 통합개념을 선정하는 과정이 필요하다. 또한 모든 통합개념이 모든 학년에서 고르게 다루어지는 것이 바람직한지, 또는 특정 통합개념이 특정 학년에서 집중적으로 다루어지는 것이 필요한지 등을 숙고하여 내용을 선정하고 조직하는 것이 필요하다.

Keywords

References

  1. Bang, D., Park, E., Yoon, H., Kim, J., Lee, Y., Park, J., Song, J., Dong, H., Shim, B., Lim, H., & Lee, H. (2013). The design of curricular framework for integrated science education based on big ideas. Journal of the Korean Association for Science Education, 33(5), 1041-1054. https://doi.org/10.14697/jkase.2013.33.5.1041
  2. Basista, B., & Mathews, S. (2002). Integrated science and mathematics professional development program. School Science and Mathematics, 102(7), 359-370. https://doi.org/10.1111/j.1949-8594.2002.tb18219.x
  3. Cervetti, G. N., Barber, J., Dorph, R., Pearson, P. D., & Goldschmidt, P. G. (2012). The impact of an integrated approach to science and literacy in elementary school classrooms. Journal of Research in Science Teaching, 49(5), 631-658. https://doi.org/10.1002/tea.21015
  4. Cho, J., Kim, S., Lee, S., Kim, M., Ok, H., Rim, H., Park, Y., Lee, M., Han, H., & Son, S. (2011). The trends in international mathematics and science study (TIMSS 2011) : A technical report of the main survey in Korea. Korea Institute for Curriculum and Evaluation.
  5. Cho, H., Kim, H., Yoon, H., & Lee, K. (2012). The theory and practice of science education. Paju: Kyoyoobook.
  6. Choi, M., H., & Choi, B. S. (1999). Content organization of middle school integrated science focusing on the integrated theme. Journal of the Korean Association for Science Education, 19(2), 204-216.
  7. Duschl, R. A., Schweingruber, H. A., & Shouse, A. (2007). Taking science to school: Learning and teaching science in grades K-8(Eds.). Washington, DC: National Academies Press.
  8. Erickson, H. L. (2001). Stirring the head, heart, and soul: Refining curriculum and instruction (2nd Ed.). Thousand Oaks, CA: Corwin.
  9. Hurd, P. D. (1991). Why we must transform science education. Educational Leadership, 49(2), 33-35.
  10. Kang, H., Kim, E., Noh, S., Park, H., Son, J., & Lee, H. (2007). Integrated science education. Paju: Korean Studies Information.
  11. Kim, K. H., Kwon, S. I, Kim, S. H., Kim, J. Y., & Jin, Y. W. (2007a). The quality of the 8th grade students' achievement in Korea: Findings from the trends in international mathematics and science study of Korea(TIMSS 2003). Korea Institute for Curriculum and Evaluation.
  12. Kim, K. H., Kwon, S. I, Kim, S. H., Kim, J. Y., & Jin, Y. W. (2007b). The Trends in international mathematics and science study(TIMSS 2007): A technical report of the main survey in Korea. Korea Institute for Curriculum and Evaluation.
  13. Kim, K. J. (2010). A study for the meaning of integrated curriculum used in the national curriculum in Korea and exploration of reform directions. The Journal of Elementary Education, 23(2), 121-151.
  14. Kim, K. J., & On, J. D. (2011). Understanding by Design (Transfer of learning understanding creativity). Seoul: Kyoyook academy
  15. Ko, Y. M. (2011). A comparative study of Korea and Singapore elementary science textbooks according to TIMSS. Masters thesis, Seoul National University of Education.
  16. Lee, J. W. (1991). Reinterpretation of knowledge integration by applying the structure of knowledge. The Journal of Curriculum Studies, 10(3), 33-45.
  17. Lee, J. M. (2005). Framework for future converging technologies and cognitive science. Science, philosophy and culture, 50, 22-42.
  18. Lee, K., & Choi, Y. (2009). Effective operation of the integrated curriculum. Seoul: Hakjisa.
  19. Lee, J., Kim, Y. J., Paik, S. H., & Lee, K. Y. (2010). An analysis of content-related issues of curriculum for the contents in science education. Journal of Science Education, 34(1), 140-154.
  20. Maeng, H. (2010). Understanding and practice of science integrated curriculum. Proceedings of the Korean Society for the Study of Curriculum Integration Conference. 7, 1-30.
  21. Mason, T. C. (1996). Integrated curricula: Potential and problems. Journal of Teacher Education, 47(4), 263-270. https://doi.org/10.1177/0022487196474004
  22. Ministry of Education, Science and Technology (2009). Curriculum and operational practices from around the world(IV) Canada. Busan Metropolitan City Office of Education.
  23. Ministry of Education, Science and Technology (2011). Science curriculum in 2009 national curriculum reform. MEST Notice No. 2011-361.
  24. National Board of Educational Evaluation (1997). Science curriculum international comparative study: A Cross-national investigation of curricular intentions in school science, TIMSS Report. Seoul: National Board of Educational Evaluation.
  25. National Research Council. (2011). A Framework for K-12 science education: practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  26. Plummer, J. D., & Krajcik, J. (2010). Building a learning progression for celestial motion: Elementary levels from an earth-based perspective. Journal of Research in Science Teaching, 47(7), 768-787. https://doi.org/10.1002/tea.20355
  27. Rennie, L. J., Venville, G., & Wallace, J. (2011). Learning science in an integrated classroom: Finding balance through theoretical triangulation. Journal of Curriculum Studies, 43(2), 139-162. https://doi.org/10.1080/00220272.2010.509516
  28. Smith, C. L., Wiser, M., Anderson, C. W., & Krajcki, J. (2006). Implication of research on children's learning for standards and assessment: A proposed learning progression for matter and the atomic molecular theory. Focus Article. Measurement: Interdisciplinary Research and Perspectives, 14, 1-98.
  29. Son, Y. (2009). Understanding and practice of science integrated curriculum. Proceedings of the Korean Society for the Study of Curriculum Integration Conference, 4, 43-77.
  30. Stoddart, T., Pinal, A., Latzke, M., & Canaday, D. (2002). Integrating inquiry science and language development for English language learners. Journal of Research in Science Teaching, 39(8), 664-687. https://doi.org/10.1002/tea.10040
  31. Taba, H. (1962). Curriculum Development: Theory and Practice, Harcourt Brace Jovanovitch, New York.
  32. Walker, D. (1990). Fundamentals of Curriculum. Harcourt Brace Jovanovich, San Diego, CA.
  33. Wiggins, G., & McTighe, J. (2005). Understanding by design(Expanded 2nd Ed.). Alexandria, VA: ASCD.

Cited by

  1. International Comparative Study on the Science Curriculum Concepts Continuity - Focus on the Concepts of Moon and Rock cycle - vol.35, pp.4, 2015, https://doi.org/10.14697/jkase.2015.35.4.0677
  2. Meanings of ‘Creativity and Integration’ in Science Education and Comments on Science Classroom Culture vol.18, pp.3, 2014, https://doi.org/10.24231/rici.2014.18.3.827
  3. 과학과 교육과정의 연계성 국제 비교: 광합성 개념 중심으로 vol.35, pp.5, 2014, https://doi.org/10.14697/jkase.2015.35.5.0805
  4. 생태계에 대한 학습발달과정의 개발과 평가 vol.36, pp.1, 2016, https://doi.org/10.14697/jkase.2016.36.1.0029
  5. 한국 초등학교 교육과정 변천에 따른 과학 교과서 생명영역 내용분석 vol.36, pp.2, 2014, https://doi.org/10.14697/jkase.2016.36.2.0203
  6. International Comparison Study on the Science Curriculum about Articulation of the ‘Light’ and ‘Electricity’ Concept vol.20, pp.4, 2014, https://doi.org/10.24231/rici.2016.20.4.322
  7. 통합 주제로서의 시스템 개념에 대한 대학생들의 인식 분석 vol.37, pp.1, 2017, https://doi.org/10.14697/jkase.2017.37.1.0077
  8. 과학과 교육과정의 핵심 개념 국제 비교 -미국, 캐나다, 호주, 영국을 중심으로- vol.37, pp.1, 2017, https://doi.org/10.14697/jkase.2017.37.1.0215
  9. 과학과 실과(기술·가정) 교육과정에 제시된 '시스템'과 '에너지' 핵심 개념의 연계성에 대한 국제 비교 연구 vol.42, pp.1, 2014, https://doi.org/10.21796/jse.2018.42.1.27
  10. 과학과 실과(기술·가정) 교육과정에 제시된 '시스템'과 '에너지' 핵심 개념의 연계성에 대한 국제 비교 연구 vol.42, pp.1, 2014, https://doi.org/10.21796/jse.2018.42.1.27
  11. 에너지에 대한 초등학생들의 개념 탐색 vol.43, pp.3, 2019, https://doi.org/10.21796/jse.2019.43.3.284
  12. 과학교육과 지속가능발전교육 접목 프로그램이 고등학생의 세계관에 미치는 영향 vol.13, pp.3, 2020, https://doi.org/10.15523/jksese.2020.13.3.253