DOI QR코드

DOI QR Code

The Evaluation of Bed Protection as Placing Methods of Mortar

모르타르 타설 방법에 따른 하상보호공의 안정성 평가

  • Kim, Jong-Tae (River Experiment Center, Korea Institute of Construction Technology) ;
  • Kim, Chang-Sung (River Experiment Center, Korea Institute of Construction Technology) ;
  • Kang, Joon-Gu (River Experiment Center, Korea Institute of Construction Technology) ;
  • Yeo, Hong-Koo (River Experiment Center, Korea Institute of Construction Technology)
  • 김종태 (한국건설기술연구원 하천실험센터) ;
  • 김창성 (한국건설기술연구원 하천실험센터) ;
  • 강준구 (한국건설기술연구원 하천실험센터) ;
  • 여홍구 (한국건설기술연구원 하천실험센터)
  • Received : 2013.12.19
  • Accepted : 2014.02.05
  • Published : 2014.02.28

Abstract

This study was to compare the protection abilities of an SPF through ground or underwater casting. A mat of 1/10 scale was made and then mortar was placed on the ground and submerged conditions. A limit velocity of each mat was estimated with this experiment. As a result of the test, the mat failed because of the decrease of bearing power in the center of the waterway. On the one hand, the edge of the mat, where the velocity is slow, secures stability. The result of the limit velocity analysis suggests that a velocity of ground placement with 6.51m/s and underwater casting with 9.80m/s is the minimum to ensure stability. When SPF mat with a thickness of 0.50m is replaced with a concrete block, it is calculated to need a maximum thickness of 2.21m.

본 연구는 육상 및 수중 타설을 통한 SPF 공법의 하상보호능력을 평가하는 것이 목적이다. 이를 위해 실제 하상보호공의 1/10 축소모형 매트를 제작하여 육상과 수중에서 모르타르를 타설했으며 실험을 통해 각 매트의 한계유속을 평가하였다. 실험 결과 매트는 대부분 수로 중앙부의 지지력 감소로 파괴가 발생했으며 상대적으로 유속이 약한 수로 가장자리에서 안정성을 확보하였다. 한계유속 분석 결과 육상타설은 6.51 m/s, 수중타설의 경우 9.80 m/s가 안정성을 확보할 수 있는 유속인 것으로 나타났으며 0.50 m 두께의 SPF매트를 콘크리트 블록으로 대체할 경우 최대 2.21 m 두께가 필요한 것으로 계산되었다.

Keywords

References

  1. K. Wardhna, F. C. Hadipriono, Analysis of recent bridge failures in the united states, J. Perf. Constr. Fac., vol. 17, No. 3, pp.144-150, 2003. DOI: http://dx.doi.org/10.1061/(ASCE)0887-3828(2003)17:3(144)
  2. Y. M. Won, A study on real time scour observation and application of empirical formulas for safety of the Han river bridge, University of Seoul, 2005.
  3. Y. Y. Choi, Variation characteristics of the bed scour at stream bridge on the heavy rainfall, Journal of Korean Society of Water Science and Technology, vol. 17, No. 2, pp.161-174, 2009.
  4. W. K. Yeo, J. G. Kang, Field investigation of bridge scour depths in small and medium streams, Journal of the research institute of industrial technology Myong Ji University, vol, 17, pp.166-172, 1998.
  5. J. R. Leech, S. R. Abt, C. I. Thornton, P. G. Combs, Developing Confidence in Concrete Revetment Products for Bank Stabilization, Journal of the American Water Resources Association, vol. 35, No. 4, pp.877-885, 1999. DOI: http://dx.doi.org/10.1111/j.1752-1688.1999.tb04181.x
  6. J. C. Paik, S. U. Choi, W. C. Cho, Hydraulic Properties of Concrete Block of Uniform Roughness Height for Bed Protection, Korean Society of Civil Engineers, vol. 19(II-6), pp. 677-686, 1999.
  7. S. R. Abt, J. R. Leech, C. I. Thornton, C. M. Lipscomb, Articulated Concrete Block Stability Testing, Journal of the American Water Resources Association, vol. 37, No. 1, pp.27-34, 2001. DOI: http://dx.doi.org/10.1111/j.1752-1688.2001.tb05472.x
  8. P. Y. Julien, D. J. Anthony, Bed Load Motion and Grain Sorting in a Meandering Stream, Journal of Hydraulic Research, vol. 40, No. 2, pp.125-134, 2002. DOI: http://dx.doi.org/10.1080/00221680209499855
  9. J. W. Cho, Stability of River Bed Protection Works in Downstream of an Apron, Gangneung-Wonju National University, 2007.
  10. H. I. Park, J. H. Shin, Estimation of local scour at piers using artificial neural network, Journal of the Korean Geotechnical Society, vol. 24, No. 11, pp.17-24, 2008.
  11. Y. M. Chiew, Mechanics of riprap failure at bridge piers, Journal of Hydraulic Eng., Vol. 121, No. 9, pp.635-643, 1995. DOI: http://dx.doi.org/10.1061/(ASCE)0733-9429(1995)121:9(635)
  12. S. Lee, H. K. Park, The stability evaluation of river embankment for a piping phenomenon, Journal of the Korea Institute for Structural Maintenance Inspection, vol. 7, No. 3, pp.175-181, 2003.
  13. K. Kwak, J. H. Park, H. S. Yoon, H. S. Woo, Bridge Scour Prioritization and Management System (II)-System verification-, Journal of Korean Society of Civil Engineers, vol. 26(2B), pp.197-208, 2006.
  14. C. S. Kim, J. T. Kim, J. G. Kang, Hydraulic Model Test on Scour Protection with Scale Effect, J. Korean Soc. Hazard Mitig., vol. 13, No. 6, pp. 375-379, 2013. https://doi.org/10.9798/KOSHAM.2013.13.6.375
  15. Construction Industry Research and Information Association, Manual on scour at bridges and other hydraulic structures, C551, pp.129-146, 2002.
  16. N. J. Kim, H. K. Lee, Explanatory text of the geological map of Yongsan sheet(1:50,000), Geological survey of Korea, 1964.
  17. M. Escarameia, R. W. P. May, Channel Protection: Turbulence Downstream of Structures, Report SR313, HR Wallingford. 1992.

Cited by

  1. Experimental Study on Stability of Levee Protection Method vol.08, pp.12, 2016, https://doi.org/10.4236/eng.2016.812077