DOI QR코드

DOI QR Code

Changes of the Oxidation/Reduction Potential of Groundwater by the Biogeochemical Activity of Indigenous Bacteria

토착미생물의 생지화학적 활동에 의한 지하수의 산화/환원전위 변화 특성

  • Lee, Seung Yeop (Korea Atomic Energy Research Institute) ;
  • Roh, Yul (Faculty of Earth Systems and Environmental Sciences, Chonnam National University) ;
  • Jeong, Jong Tae (Korea Atomic Energy Research Institute)
  • Received : 2013.11.04
  • Accepted : 2014.02.03
  • Published : 2014.02.28

Abstract

As we are trying to in-situ treat (purify or immobilize) heavy metals or radionuclides in groundwater, one of the geochemical factors to be necessarily considered is the value of oxidation/reduction potential (ORP) of the groundwater. A biogeochemical impact on the characteristic ORP change of groundwater taken from the KAERI underground was observed as a function of time by adding electron-donor (lactate), electron-acceptor (sulfate), and indigenous bacteria in a laboratory condition. There was a slight increase of Eh (slow oxidation) of the pure groundwater with time under a $N_2$-filled glove-box. However, most of groundwaters that contained lactate, sulfate or bacteria showed Eh decrease (reduction) characteristics. In particular, when 'Baculatum', a local indigenous sulfate-reducing bacterium, was injected into the KAERI groundwater, it turned to become a highly-reduced one having a decreased Eh to around -500 mV. Although the sulfate-reducing bacterium thus has much greater ability to reduce groundwater than other metal-reducing bacteria, it surely necessitated some dissolved ferrous-sulfate and finally generated sulfide minerals (e.g., mackinawite), which made a prediction for subsequent reactions difficult. As a result, the ORP of groundwater was largely affected even by a slight injection of nutrient without bacteria, indicating that oxidation state, solubility and sorption characteristics of dissolved contaminants, which are affected by the ORP, could be changed and controlled through in-situ biostimulation method.

중금속류나 방사성 물질로 오염된 지하수를 원위치에서 처리(정화 혹은 고정화)하고자 할 때, 반드시 고려해야 할 지화학적 요소 중의 하나는 지하수의 산화/환원전위 값이다. 우리는 생지화학적 작용에 의한 현장 지하수의 산화/환원전위 변화 특성을 알아보기 위해 실험실 조건에서 한국원자력연구원의 심부지하수를 대상으로 전자공여체(젖산), 전자수용체(황산염) 및 토착미생물을 주입하여 시간별로 산화/환원전위 변화를 관찰하였다. 질소가스-충전 글로브박스에 있는 순수 지하수는 시간이 경과함에 따라 미약한 Eh 상승(약산화)이 있었다. 하지만, 젖산, 황산염 혹은 미생물이 주입된 지하수 대부분의 Eh는 감소(환원)하는 특성을 보여주었다. 특히, 국내 토착 황산염환원미생물인 '바쿨라텀'이 주입되었을 때, 지하수의 Eh가 -500 mV 근처까지 감소하여 강환원성 지하수로 바뀌었다. 이처럼 일반 금속환원박테리아에 비해 황산염환원박테리아의 지하수 환원화 능력이 매우 우수함에도 불구하고, 용존 황산철을 필요로 하였고 최종적으로 황화광물(예; 맥키나와이트)이 생성되면서 추후 반응에 관한 예측을 어렵게 하였다. 결과적으로, 미생물 외에도 미량의 영양물질 주입 여하에 따라 지하수의 산화/환원전위가 크게 달라졌으며, 이는 산화/환원전위의 영향을 받는 용존 오염 물질의 산화수, 용해도 및 수착 등의 특성들이 생물자극법에 의해 바뀌거나 조절될 수 있음을 의미한다.

Keywords

References

  1. Ahn, J.S., Ko, K.S., Lee, J.S. and Kim, J.Y. (2005) Characteristics of natural arsenic contamination in groundwater and its occurrences. Economic and Environmental Geology, v.38, p.547-561.
  2. Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., Resch, C.T., Long, P.E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D.R., Peacock, A., White, D.C., Lowe, M. and Lovley, D.R. (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology, v.69, p.5884-5891. https://doi.org/10.1128/AEM.69.10.5884-5891.2003
  3. Barton, L.L. and Hamilton, W.A. (2007) Sulphate-reducing bacteria. Cambridge University Press, 533p.
  4. Bi, Y., Hyun, S.P., Kukkadapu, P.K. and Hayes, K.F. (2013) Oxidative dissolution of $UO_{2}$ in a simulated groundwater containing synthetic nanocrystalline mackinawite. Geochimica et Cosmochimica Acta, v.102, p.175-190. https://doi.org/10.1016/j.gca.2012.10.032
  5. Chon, C.M., Kim, K.Y., Koh, D.C. and Choi, M.J. (2009) Arsenic distribution and solubility in groundwater of Okcheon area. Journal of the Mineralogical Society of Korea, v.22, p.331-342.
  6. Ehrlich, H.L. and Newman, D.K. (2009) Geomicrobiology. 5th(ed.), CRC Press, 606p.
  7. Gramp, J.P., Bigham, J.M., Jones, F.S. and Tuovinen, O.H. (2010) Formation of Fe-sulfides in cultures of sulfatereducing bacteria. Journal of Hazardous Materials, v.175, p.1062-1067. https://doi.org/10.1016/j.jhazmat.2009.10.119
  8. Konhauser, K (2007) Introduction to geomicrobiology. Blackwell publishing, 425p.
  9. Lee, S.Y. and Baik, M.H. (2007) Characters of fracturefilling minerals in the KURT and their significance. Journal of the Mineralogical Society of Korea, v.20, p.165-173.
  10. Lee, S.Y., Baik, M.H. and Song, J.K. (2009) Removal characteristics of dissolved uranium by Shewanella p. and application to radioactive waste disposal. Korea Society of Economic and Environmental Geology, v.42, p.471-477.
  11. Lee, S.Y., Baik, M.H. and Choi, J.W. (2010) Biogenic formation and growth of uraninite (UO2). Environmental Science and Technology, v.44, p.8409-8414. https://doi.org/10.1021/es101905m
  12. Lee, S.Y., Oh, J.M. and Baik, M.H. (2011a) Interaction between selenium and bacterium and mineralogical characteristics of biotreated selenium. Journal of the Mineralogical Society of Korea, v.24, p.217-224. https://doi.org/10.9727/jmsk.2011.24.3.217
  13. Lee, S.Y., Oh, J.M. and Baik, M.H. (2011b) Uranium removal by D. baculatum and effects of trace metals. Journal of the Mineralogical Society of Korea, v.24, p.83-90. https://doi.org/10.9727/jmsk.2011.24.2.083
  14. Lee, S.Y., Oh, J.M., Baik, M.H. and Lee, Y.J. (2011c) Channge of oxidation/reduction potential of solution by metal-reducing bacteria and roles of biosynthesized mackinawite. Journal of the Mineralogical Society of Korea, v.24, p.279-287. https://doi.org/10.9727/jmsk.2011.24.4.279
  15. Lee, S.Y., Baik, M.H. and Jeong, J. (2012) Study on the oxidation and dissolution characteristics of biogenic mackinawite. Journal of the Mineralogical Society of Korea, v.25, p.155-162. https://doi.org/10.9727/jmsk.2012.25.3.155
  16. Lee, S.Y., Baik, M.H., Cho, H.R., Jung, E.C., Jeong, J.T., Choi, J.W., Lee, Y.B. and Lee, Y.J. (2013) Abiotic reduction of uranium by mackinawite (FeS) biogenerated under sulfate-reducing condition. Journal of Radioanalytical and Nuclear Chemistry, v.296, p.1311-1319. https://doi.org/10.1007/s10967-013-2438-6
  17. Lee, S.Y., Cha, W.S., Kim, J.G., Baik, M.H., Jung, E.C., Jeong, J.T., Kim, K., Chung, S.Y. and Lee, Y.J. (2014) Uranium(IV) remobilization under sulfate reducing conditions. Chemical Geology, v.370, p.40-48. https://doi.org/10.1016/j.chemgeo.2014.01.020
  18. Oh, J.M., Lee, S.Y., Baik, M.H. and Roh, Y. (2010) Characterization of uranium removal and mineralization by bacteria in deep underground, Korea Atomic Energy Research Institute (KAERI). Journal of the Mineralogical Society of Korea, v.23, p.107-115.
  19. Seo, H., Rhee, S.K., Kim, K., Park, E., Kim, Y., Chon, C.M., Moon, J.W. and Roh, Y. (2012) Biogeochemical remediation of Cr(VI)-contaminated groundwater using MMPH-0 (Enterobacter aerogenes). Korea Society of Economic and Environmental Geology, v.45, p.105-119. https://doi.org/10.9719/EEG.2012.45.2.105
  20. Ulrich, K.U., Singh, A., Schofield, E.J., Bargar, J.R., Veeramani, H., Sharp, J.O., Bernier-Latmani, R. and Giammar, D.E. (2008) Dissolution of biogenic and synthetic $UO_{2}$ under varied reducing conditions. Environmental Science and Technology, v.42, p.5600-5606. https://doi.org/10.1021/es800647u