DOI QR코드

DOI QR Code

Experimental Study on Improving Compressive Strength of MWCNT Reinforced Cementitious Composites

MWCNT 보강 시멘트 복합체의 압축강도 향상에 대한 실험적 연구

  • Received : 2013.08.05
  • Accepted : 2013.10.02
  • Published : 2014.02.28

Abstract

This experimental study was intended to improve the compressive strength of multi-walled CNT reinforced cementitious composites with efficiency. The variables considered are the degree of sonication, the amount of surfactant, the replacement ratio of silica fume, etc. Optical microscope informed that fiber dispersion of CNT was improved with the increase of sonication time, and the compressive strength was proved to be enhanced as the degree of sonication increased. When superplasticizer as a surfactant had SP/CNT ratio of 4~6, the best improvement in strength was obtained. Silica fume was shown to produce the highest compressive strength at 10% replacement. Microstructure of CNT composites was also analyzed; XRD and SEM results indicated that CNT addition hardly changed hydration products and microstructure, and MIP analysis found the reduction of total porosity as well as the increase of nano-pores with the size of tens of nm instead of the decrease of pore distribution in the region of around 10 ${\mu}m$ and 100 nm. The results of microstructure analysis explains that the strength improvement is closely related to physical contribution rather than chemical influence by adding CNT.

이 연구에서는 multi-walled CNT 보강 시멘트 복합체의 효과적인 압축강도 향상을 위하여 섬유 분산을 위한 초음파처리 정도, 계면활성제의 사용량, 실리카퓸 치환율 등을 실험변수로 하여, 그 영향을 실험적으로 살펴보았다. 초음파 처리 시간에 따른 CNT 분산성 변화는 광학현미경을 통해 확인하였으며, CNT 시멘트 복합체의 압축강도가 초음파 처리 정도에 따라 향상됨을 확인할 수 있었다. 계면활성제로 사용된 고성능감수제 사용량의 영향은 SP/CNT비가 4~6일 때 강도향상 효과가 가장 좋은 것으로 나타났다. 한편, 실리카퓸 치환율에 따른 압축강도의 변화에서는 실리카퓸을 10 % 치환했을 때 강도에 대한 CNT 보강효과가 가장 큰 것으로 나타났다. CNT 보강 시멘트 복합체의 미세구조 분석도 함께 실시하였는데, XRD와 SEM 분석 결과에서는 CNT 혼입으로 인한 수화생성물 및 미세구조의 변화는 거의 없는 것으로 나타났으며, MIP 분석을 통해서는 공극률 감소와 함께, $10{\mu}m$ 및 100 nm 크기 전후의 공극분포가 줄어드는 대신 수 십 나노미터 크기의 작은 공극들의 분포가 증가함을 확인하였다. 이를 통해 CNT의 혼입에 따른 압축강도 증가는 화학적 영향보다는 물리적 영향이 큰 것으로 판단된다.

Keywords

References

  1. Qian, D., Dickey, E. C., Andrews, R., and Rantell, T., "Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites," Applied Physics Letters, Vol. 76, No. 20, 2000, pp. 2868-2870. https://doi.org/10.1063/1.126500
  2. Andrews, R., Jacques, D., Minot, M., and Rantell, P., "Fabrication of Carbon Multiwall Nanotube/Polymer Composites by Shear Mixing," Macromolecular Materials and Engineering, Vol. 287, 2002, pp. 395-403. https://doi.org/10.1002/1439-2054(20020601)287:6<395::AID-MAME395>3.0.CO;2-S
  3. Park, J. M., Kim, D. S., Lee, J. R., and Kim, T. W., "Nondestructive Damage Sensitivity and Reinforcing Effect of Carbon Nanotube/Epoxy Composites Using Electro-Micromechanical Technique," Materials Science Engineering: C, Vol. 23, No. 6-8, 2003, pp. 971-975. (doi: http://dx. doi.org/10.1016/j.msec.2003.09.131)
  4. Flahaut, E., Peigney, A., Laurent, C. H., Marliere, C. H., Chastel, F., and Rousset, A., "Carbon Nanotube-Metal-Oxide Nanocomposites: Microstructure Electrical Conductivity and Mechanical Properties," Acta Materialia, Vol. 48, 2000, pp. 3803-3812. (doi: http://dx.doi.org/10.1016/S1359-6454(00)00147-6)
  5. Peigney, A., Laurent, C. H., Flahaut, E., and Rousset, A., "Carbon Nanotubes in Novel Ceramic Matrix Nanocomposites," Ceramics International, 2000, Vol. 26, pp. 677-683. (doi: http://dx.doi.org/10.1016/S0272-8842(00)00004-3)
  6. Konsta-Gdoutos, M. S., Metaxa, Z. S., and Shah, S. P., "Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials," Cement and Concrete Research, Vol. 40, No. 7, 2010, pp. 1052-1059. (doi: http://dx.doi.org/ 10.1016/j.cemconres.2010.02.015)
  7. Li, G. Y., Wang, P. M., and Zhao, X., "Mechanical Behavior and Microstructure of Cement Composites Incorporating Surface-Treated Multi-Walled Carbon Naotubes," Carbon, Vol. 43, No. 6, 2005, pp. 1239-1245. (doi: http://dx.doi.org/10.1016/j.carbon.2004.12.017)
  8. Ijiima, S., "Helical Microtubules of Graphitic Carbon," Nature, Vol. 354, 1991, pp. 56-58. https://doi.org/10.1038/354056a0
  9. Saez de Ibarra, Y., Gaitero, J. J., Erkizia, E., and Campillo, I., "Atomic Force Microscopy and Nanoindentation of Cement Pastes with Nanotube Dispersions," Physica Status Solidi A, Vol. 203, No. 6, 2006, pp. 1076-1081. (doi: http://dx.doi.org/10.1002/pssa.200566166)
  10. Wansom, S., Kidner, N. J., Woo, L. Y., and Mason, T. O., "AC-Impedance Response of Multiwalled Carbon Nanotube/Cement Composites," Cement and Concrete Composites, Vol. 28, No. 6, 2006, pp. 509-519. (doi: http://dx.doi.org/10.1016/j.cemconcomp.2006.01.014)
  11. Cwirzen, A., Habermehl-Chirzen, K., and Penttala, V., "Surface Decoration of Carbon Nanotubes and Mechanical Properties of Cement/Carbon Nanotube Composites," Advances in Cement Research, Vol. 20, No. 2, 2008, pp. 65-73. (doi: http://dx.doi.org/10.1680/adcr.2008.20.2.65)
  12. Kreupl, F., Graham, A. P., Liebau, M., Duesberg, G. S. Seidel, R., and Unger, E., "Carbon Nanotubes for Interconnect Applications," Proceedings of the IEEE International Electron Devices Meeting (IEDM '04), 2004, pp. 683-686.
  13. Li, G. Y., Wang, P. M., and Zhao, X., "Pressure-Sensitive and Microstructure of Carbon Nanotube Reinforced Cement Composites," Cement and Concrete Composites, Vol. 29, No. 5, 2007, pp. 377-382. (doi: http://dx.doi. org/10.1016/j.cemconcomp.2006.12.011)
  14. Zhi, G. and Gao, Z., "Applications of Nanotechnology and Nanomaterials in Construction," Proceedings of the 1st International Conference on Construction on Developing Coun-tries (ICCIDC-1 '08), Advancing and Integrating Construction Education, Reseach & Practice, Pakistan, Iran, 2008.
  15. Rana, A. K., Rana, S. B., and Chaipanich, A., "Significance of Nanotechnology in Construction Engineering," International Journal of Recent Trends in Engineering, Vol. 4, 2009, pp. 46-48.
  16. Saafi, M., "Wireless and Embedded Carbon Nanotube Networks for Damage Detection in Concrete Structures," Nanotechnology, Vol. 20, 2009, pp. 1-7. (doi: http://dx. doi.org/10.1088/0957-4484/20/39/395502)
  17. Kang, I., Heung, Y. Y., Kim, J. H., Lee, J. W., Gollapudi, R., Subramaniam, G., Narasimhadevara, S., Hurd, D., Kirikera, G. R., Shanov, V., Schulz, M. J., Shi, D., Boerio, J., Malll, S., and Ruggles-Wren, M., "Introduction to Carbon Nanotube and Nanofiber Smart Materials," Composites Part B: Engineering, Vol. 37, 2006, pp. 382-394. (doi: http://dx.doi.org/10.1016/j.compositesb.2006.02.011)
  18. Yu, X. and Kwon, E., "A Carbon Nanotube/Cement Composite with Piezoresistive Properties," Smart Materials and Structures, Vol. 18, 2009, pp. 1-5. (doi: http://dx. doi.org/10.1088/0964-1726/18/5/055010)
  19. Kang, I., Schulz, M. J., Kim, J. H., Shanov, W., and Shi, D., "A Carbon Nanotube Strain Sensor for Structural Health Monitoring," Smart Materials and Structures, Vol. 15, 2006, pp. 737-748. (doi: http://dx.doi.org/10.1088/0964-1726/15/3/009)
  20. Han, B., Yu, X., and Kwon, E., "A Self-Sensing Carbon Nanotube/Cement Composite for Traffic Monitoring," Nanotechnology, Vol. 20, 2009, pp. 1-5. (doi: http://dx. doi.org/10.1088/0957-4484/20/44/445501)
  21. Lee, J. H., Park, H. G., Lee, J. S., Ryu, Y. S., Hong, S. B., and Kim, W. J., "A Study on the Dynamics of CNT Contained Functional Concrete and Temperature Characteristics," Proceedings of Korea Concrete Institute, Vol. 23, No. 2, 2011, pp. 365-366.
  22. Lee, J. H., Lee, J. W., Lee, J. S., Hong, S. B., Kim, W. J., and Ryu, Y. S., "The Research on the Hydration Heat Reduction Characteristics of CNT Mixing Functionality Concrete," Proceedings of Korea Concrete Institute, Vol. 24, No. 2, 2012, pp. 733-734.
  23. Xie, X. L., Mai, Y. W., and Zhou, X. P., "Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review," Materials Science and Engineering R, Vol. 49, 2005, pp. 89-112. (doi: http://dx.doi.org/10.1016/j.mser.2005.04.002)
  24. Makar, J. M. and Beaudoin, J. J., "Carbon Nanotubes and Their Applications in the Construction Industry," Proceedings of the 1st International Symposium on Nanotechnology in Construction, Paisley, Scotland, 2003, pp. 331-341.
  25. Shah, S. P., "Nanoscale Modification of Cementitious Materials," Nanotechnology in Construction 3: Proceedings of the NICOM3, 2009, pp. 125-130.
  26. Ferro, G. J., Tulliani, M., and Musso, S., "Carbon Nanotubes Cement Composites," Convegno IGF XXI Cassino 2011, Italy, 2011, pp. 49-59.
  27. Luo, J., Duan, J. Z., and Li, H., "The Influence of Surfactants on the Processing of Multi-Walled Carbon Nanotubes in Reinforced Cement Matrix Composites," Physica Status Solidi A, Vol. 206, No. 12, 2009, pp. 2783-2790. (doi: http://dx.doi.org/10.1002/pssa.200824310)
  28. Sanchez, F. and Ince, C., "Microstructure and Macroscopic Properties of Hybrid Carbon Nanofiber/Silica Fume Cement Composites," Composites Science and Technology, Vol. 69, 2009, pp. 1310-1318. (doi: http://dx.doi.org/ 10.1016/j.compscitech.2009.03.006)