DOI QR코드

DOI QR Code

고강도 콘크리트 보에서 Tension Stiffening 모델을 이용한 실험적 연구 및 평가

Experimental Study and Evaluation of Tension Stiffening Model in High Strength Concrete Beams

  • Shin, Dae Hwan (Department of Architectural Engineering, Kyunghee University) ;
  • Jo, Eunsun (Department of Architectural Engineering, Kyunghee University) ;
  • Kim, Min Sook (Department of Architectural Engineering, Kyunghee University) ;
  • Kim, Heechuel (Department of Architectural Engineering, Kyunghee University) ;
  • Lee, Young Hak (Department of Architectural Engineering, Kyunghee University)
  • 투고 : 2014.02.01
  • 심사 : 2014.02.11
  • 발행 : 2014.02.28

초록

강도 한계상태 설계에서는 균열이 일어난 이후 철근콘크리트 부재의 인장영역에서 철근이 모든 인장력을 부담하는 것으로 가정한다. 그러나 균열 사이의 콘크리트가 실제 콘크리트 부재에서는 특히 사용하중 수준에서의 어느 정도의 인장 응력을 견디는데, 일조 하는 것으로 보고 있다. 이러한 효과를 Tension stiffening 효과라 한다. 본 연구에서는 Tension stiffening 모델과 고강도 철근 콘크리트 보의 휨 실험결과의 비교를 통해 해석모델의 유효성을 평가 하고자 한다. 이를 통해 선정 된 6가지의 Tension stiffening 모델과 실험에 의한 모멘트-곡률, 하중-처짐등을 관계를 평가하였다. 실험결과 설계기준에서는 ACI 318이 Tension stiffening 모델에서는 Owen & Damjanic이 실험 값과 가장 적은 오차율을 보이며 높은 신뢰도를 보였다.

In strength limit states design, it is assumed that after cracking, reinforcement carries all tension in the tension zone of reinforced concrete members. However, it can be seen the concrete between cracks will contribute to carrying a part of the tension stress in actual concrete members particularly at service load levels, this effect is referred as tension stiffening effect. In this study, tension stiffening models and high strength concrete beam flexural test results were verified through comparison. The relationship between moment-curvature and load-deflection was evaluated by result of tension stiffening model and test result values. The analysis results showed that ACI 318 and Owen & Damjanic generally shows good agreement.

키워드

참고문헌

  1. ACI Committee 318-11 (2011) Building Code Requirements for Reinforced Concrete(ACI 318-11) and Commentary, American Concrete Institute, Farmington Hills.
  2. Branson, B.E. (1963) Instantaneous and Time-Dependent Deflections of Simple and Continuous Reinforced Concrete Beams, Alabama Highway Department, Bureau of public roads, HPR Publication 7, pp.1-78.
  3. British Standard Committee (1997) British Standard Code: Design of Concrete Structures (BS 8110-1: 1997), British Standards.
  4. Choi, B.S. (1998) Variability of Reinforced Concrete Beam Deflections, PhD Thesis, The Pennsylvania State University, USA.
  5. Choi, S.W., Yang, J.H., Kim, W. (2010) Influence of Tension Stiffening Effect on Delfection and Crack Width in RC Members, KCI Concrete Journal, 22(6), pp.761-768.
  6. Comite Euro-International du Beton (CEB) (1993) CEB-FIP Model Code 1990, Thomas Telford, London.
  7. Damjanic, F., Hinton, E., Owen, D.R.J., Bicanic. N., Simovic, V. (1984) Proceedings of the International Concrete on Computer-Aided Analysis and Design of Concrete Structures Part I.Pineridge Press, Swansea, U.K, pp.693-706.
  8. Lee, B.H., Hong, C.W., Chang, D.I. (1998) Failure Behavior and Tension Stiffening of RC Tension Members, J. Korean Soc. Civ. Eng., 18(3-3), pp.483-494.
  9. Lee, J.C. (2003) Comparative Study of Tension Stiffening Models in Reinforced Concrete Beams, Thesis, The Pennsylvania State University, USA.
  10. Lee, S.B., Jang, S.Y., Kim, S.S., Lee, J.S. (2005) Experimental Evaluation of Effective Flexural Rigidity in Reinforced Concrete Beams Considering Tension Stiffening Effect, KCI Concrete Journal, 17(6), pp.1033-1042. https://doi.org/10.4334/JKCI.2005.17.6.1033
  11. Lin, C.S., Scordelis, A.C. (1975) Nonlinear Analysis of RC Shell of General Form, Journal of the Structural Division, ASCE, ST3, pp.523-538.
  12. Murashev, V.E. (1940) Theory of Appearance and Opening of Cracks, Computation of Rigidity of Reinforced Concrete Members, Stroitelnaya Promishlenost, Moscow.
  13. Noh, S.Y., Kim, Y.R., Jung, J.C. (2012) Effective Moment of Inertia in Reinforced Concrete Beams based on the Moment-deflection Relation, Architectural Research, 28(10), pp.3-10.
  14. Scanlon, A. (1972) Time Dependent Deflections of Reinforced Concrete Slabs, PhD Thesis, University of Alberta, Canada.
  15. The Mathworks (2011) MATLAB Version 7.12(The Language of Technical Computing) User's Manual, The Mathworks.
  16. Yoon. S.H., Kim, J.S., Yum, H.S., Kim, W. (1998) Tension Stiffening Effect of High Strength Concrete, KCI Concrete Journal, 10(2), pp.495-500.