• Title/Summary/Keyword: 모멘트-곡률

Search Result 133, Processing Time 0.045 seconds

Material Nonlinear Analysis of RC Beams Based on Moment-Curvature Relations (모멘트-곡률 관계에 기초한 철근콘크리트 보의 재료비선형 해석)

  • 곽효경;김지은
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.295-307
    • /
    • 1998
  • 철근콘크리트 보에 대해서 인장강화효과의 소성힌지길이를 고려한 재료비선형 해석을 수행하였다. 비선형 해석에서 자유도가 많은 대형구조물에 적용시키기에는 많은 제약이 따르는 복잡한 층상해석기법을 사용하는 대신 단면해석을 통해 미리 구성된 모멘트-곡률 관계를 이용하였으며, 유한요소해석에서 사용요소의 크기에 따른 수치해석상의 오차를 줄이기 위해 인장강화효과와 소성힌지길이 개념을 도입하였다. 마지막으로 제안된 해석 알고리즘의 타당성을 검증하기 위하여 해석결과와 실험결과간의 상호 관계를 비교, 분석하였다.

  • PDF

Flexural Behavior of Composite HSB I-Girders in Positive Moment (HSB 강합성거더 정모멘트부 휨거동)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.377-388
    • /
    • 2010
  • The flexural behavior of composite HSB600 and HSB800 I-girders under a positive moment was investigated using the material non-linear moment-curvature analysis method. Three representative composite sections with different ductility properties were selected as the baseline sections in this study. Using these baseline sections, the moment-curvature program was verified by comparing the flexural strength and the moment-curvature curve obtained from the program with those obtained using the non-linear FE analysis of ABAQUS. In the FE analysis, the composite girders were modeled three-dimensionally with flanges, the web, and the concrete slab as thin shell elements, and initial imperfections and residual stresses were imposed on the FE model. In the moment-curvature and FE analyses, the 28-day compressive strength of the concrete slab was assumed to be 30-50 MPa, and the HSB600 and HSB800 steels were modeled as elasto-plastic strain-hardening materials, with the concrete as the CEB-FIP model. The effects of the ductility ratio of the composite girder, the type of steel, the compressive strength of the concrete deck, and the location of the plastic neutral axis on the flexural characteristics were analyzed.

Simplified Moment-Curvature Relationship Model of Reinforced Concrete Columns Considering Confinement Effect (구속효과를 고려한 철근 콘크리트 기둥의 모멘트-곡률 관계 단순모델)

  • Kwak, Min-Kyoung;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.279-288
    • /
    • 2016
  • The present study simplified the moment-curvature relationship to straightforwardly determine the flexural behavior of reinforced concrete (RC) columns. For the idealized column section, moments and neutral axis depths at different stages(first flexural crack, yielding of tensile reinforcing bar, maximum strength, and 80% of the maximum strength at the descending branch) were derived on the basis of the equilibrium condition of forces and compatibility condition. Concrete strains at the extreme compression fiber beyond the maximum strength were determined using the stress-strain relationship of confined concrete, proposed by Kim et al. The lateral load-displacement curves converted from the simplified moment-curvature relationship of columns are well consistent with test results obtained from column specimens under various parameters. The moments and the corresponding neutral axis depth at different stages were formulated as a function of longitudinal reinforcement and transverse reinforcement indices and/or applied axial load index. Overall, curvature ductility of columns was significantly affected by the axial load level as well as concrete compressive strength and the amount of longitudinal and transverse reinforcing bars.

Elastic Stability of Thin-Walled Arches subjected to Uniform Bending - Linear Bending Normal Strain Distribution -

  • Ryu, Hyo-Jin;Lim, Nam-Hyoung;Lee, Chin-Ok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.11-15
    • /
    • 2009
  • This paper is concerned with the elastic buckling of thin-walled arches that are subjected to uniform bending. Nonlinear strain-displacement relations with the initial curvature are substituted into the second variation of the total potential energy to obtain the energy equation including initial curvature effects. The approximation for initial curvature effects that the bending normal strain distribution is linear across the cross section is applied consistently in the derivation process. The closed form solution is obtained for flexural-torsional buckling of arches under uniform bending and, it is compared with the previous theoretical results.

Moment-Curvature Relation of Concrete Filled Circular Steel Tubular Beam with Nonlinear Stress-Strain Properties (비선형 응력-변형률 특성을 갖는 콘크리트 충전 원형강관 보의 모멘트-곡률 관계)

  • Park, Woo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.195-202
    • /
    • 2005
  • This paper presents moment-curvature analytical method of concrete filled steel tubular members considering intensity increase phenomenon by triaxial compression stress generation. For this purpose, this study considers buckling characteristics about compression department of steel members that filled up light weight and normal concrete. The analytical results are compared with the test results. Even if beam that filled up light weight concrete was calculated moment-curvature relationship easily analytically and could know that analytical results estimates as well agreed with the test results in case filled up normal concrete. In addition, the efficiency and applicabilities of the proposed moment curvature relationship algorithm are verified through conventional experimental results.

Development of the Simplified Analysis Model for RC Structures Considering Plastic Behavior (소성거동을 고려한 RC 구조물의 간략화 해석모델에 관한 연구)

  • 정연주;유영찬
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.361-371
    • /
    • 2000
  • RC structure is the composite material system combined concrete and steel showing different plastic behavior. Especially, concrete shows very complex plastic behavior. Therefore, for plastic analysis of RC structures, we have to model carefully each plastic behavior of concrete and steel member. But, because of divergency as well as difficulties and dimensions of modelling, it takes a lot of time and labor or sometimes it is impossible to perform plastic analysis of RC structures. In this study, for simplified plastic analysis of RC structures, we propose material transformation method by homogeneous and isotropic material which have the same plastic property as RC. We generate homogeneous and isotropic material showing the same moment-curvature curves (bi-linear stress-strain relation) as RC members, using bi-linear moment-curvature relation by yielding moment, yielding curvature and ultimate moment, ultimate curvature of RC member. Finally, we prove compatibility in the study by comparing plastic analysis results for various analysis models using transformed material models and RC model.

  • PDF

The Moment-Curvature Relationship of the Rectangular Ultra High Performance Fiber Reinforced Concrete Beam (초고강도 섬유보강 직사각형 콘크리트보의 모멘트-곡률 관계)

  • Han, Sang-Mook;Guo, Qing-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.9-15
    • /
    • 2011
  • The flexural behavior of the UHPFRC rectangular beam which has 100 MPa, 140 MPa compressive strength were compared with that of the typical RPC rectangular beam which has same geometrical shape, prestressd force and 160 MPa compressive strength. UHPFRC beam was not reinforced at all and the variable of test is fraction of steel fiber, compressive strength of concrete, method of prestressing and ratio of prestressing bar. The behavior of UHPFRC beam was analysed by relationship of moment - curvature and load - deflection. Simple modeling of stress-strain of UHPFRC was proposed. Based on the proposed constituted, the flexural moment-curvature relationship was calculated and compared with experimental data on prestressed UHPFRC beams. Good agreement between calculated strengths and experimental data is obtained.

A New Wiregrid Modeling Scheme for a Curvature Varying Surface (곡률을 갖는 산란체의 새로운 선조합 모델링 기법)

  • 심재륜
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.200-206
    • /
    • 2002
  • A new wiregrid modeling scheme is proposed for a curvature varying scatterer A 2-dimensional conducting elliptic cylinder is modelled by wires with the different size of radius considering the radius of curvature on the surface. The magnitude of the internal field in the conducting elliptic cylinder is used as an indicator to check the accuracy of solutions between two methods. Numerical results show that this new wiregrid model scheme can be reduced the number of wires and applied to enhance the accuracy of solutions for a curvature varying scatterer.

Effect of Tension, Compression and Lateral Reinforcement In Ductility Ratio in RC Flexural Members (철근콘크리트 휨 부재에서 인장, 압축 및 횡보강근이 연성률에 미치는 효과)

  • 연규원;박찬수
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.553-560
    • /
    • 2001
  • The ductility capacity should be estimated for inelastic analysis and design of reinforced concrete flexural members. Therefore, to estimate the ductility capacity, the model of moment-curvature relationship of reinforced concrete flexural member is assumed in this study. The curvature, rotation, and displacement(deflection) of reinforced concrete cantilever beams are analyzed and tested. The analytical results are compared with the test results. According to the analytical and test results, the assumed model of moment-curvature relationship in this study is adequate in flexural analysis of reinforced concrete members because the analytical results are well agreed with the test results, and it is resonable to express the ductility capacity in the rotation or displacement ductility, Because the curvature ductility is the limited index in a certain section. It is investigated that the ductility capacity is proportional to lateral reinforcement and compression reinforcement and inversely proportional to tension reinforcement.