DOI QR코드

DOI QR Code

수학 문제해결 과정에서 학습행위 형성 수준에 대한 연구

A study on learning action formation levels in the process of mathematics problem solving

  • Han, Inki (Department of Mathematics Education, Gyeongsang National University) ;
  • Kang, Nakyung (Weolsan Middle School)
  • 투고 : 2013.12.19
  • 심사 : 2014.02.12
  • 발행 : 2014.02.28

초록

In this paper, we summarize briefly some of the most salient features of Repkina & Zaika's theory of learning action formation levels. We concretize Repkina & Zaika's theory by comparing various points of view of Uoo, Polya, Krutetskii, and Davydov et al. In this study we are able to diagnose students' learning action formation levels in the process of mathematics problem solving. In addition we use interview method to collect various information about students' levels. As a result we suggest data related with each level of learning action formation, and characteristics of students who belong to each level of learning action formation.

키워드

참고문헌

  1. 교육과학기술부 (2011). 수학과 교육과정(교육과학기술부 고시 제 2011-361호). (Ministry of Education, Science and Technology. (2011). Mathematics Curriculum.)
  2. 서혜애 외 (2010). 과학.수학교사 생애주기 연수체제 구축을 위한 연구, 서울: 한국과학창의재단. (Seo, H. et al. (2010). Lifelong Professional Development System for Inservice Teachers of Science and Mathematics, Seoul: KFASC.)
  3. 우정호 (2004). 수학 학습-지도 원리와 방법, 서울: 서울대출판부. (Uoo, J. (2004). Principles and Methods of Learning-Teaching in Mathematics, Seoul: SNU press.)
  4. 이인제 외 (2004). 수학과 교사의 학생 평가 전문성 신장 모형과 기준, 서울: 한국교육과정평가원. (연구보고 RRE 2004-5-6) (Lee, I. et al. (2004). An Exploratory Study of Professional Standards of Korean Secondary School Mathematics Teacher's Assessment of Students, Seoul: KICE.)
  5. 한인기 (2013). Davydov의 활동이론에 기반한 초등학교 수학교과서의 내용 분석, East Asian Mathematical Journal 29(2), pp.137-168. (Han, I. (2013). An Analysis of Mathematics Textbook's Contents Based on Davydov's Activity Theory, East Asian Mathematical Journal 29(2), pp.137-168.) https://doi.org/10.7858/eamj.2013.011
  6. 황혜정 외(2012). 수학교육학신론, 서울: 문음사. (Hwang H. et al. (2012). New Theories of Mathematics Education, Seoul: Mooneumsa.)
  7. Aismontas B. B. (2002). Obshaya psihologiya, Vlados press.
  8. Davydov V. V. (1996). Teoriya razvivayushego obucheniya, Moscow: Intor.
  9. Freudenthal H. (2008). 프로이덴탈의 수학교육론 (우정호 외 역), 서울: 경문사. (원저 1991년 출판) (Freudenthal H. (2008). Theory of Mathematics Education of Freudenthal, Seoul: Kyungmoonsa. (Translated by Uoo, J. et al.))
  10. Krutetskii V.A. (1968). Psihologiya matematicheskih sposobnoctei shkolnikov, Moscow: Prosveshenie.
  11. Leont'ev A. N. (2004). Deyatelnocti, soznanie, lichinosti, Moscow: Academia.
  12. NCTM (2007). 학교수학을 위한 원리와 규준 (류희찬 외 역), 서울: 경문사. (원저 2000년 출판) (NCTM (2007). Principles and Standards for School Mathematics, Seoul: Kyungmoonsa. (Translated by Lew, H. et al.))
  13. Petrovskii A.V. et al. (1986). Obshaya psihologiya, Moscow: Prosveshenie.
  14. Polya G. (2005). 어떻게 문제를 풀 것인가? (우정호 역), 서울: 교우사. (원저 1971년 출판) (Polya G. (2005). How to Solve it, Seoul: Kyowoosa. (Translated by Uoo, J.))
  15. Repkin V.V. (1997). Razvivayushee obuchenie i uchebnaya deyatelnocti, Riga.
  16. Repkina G.V. & Zaika E.V. (1993). Otsenka urovnya sformirovannosti uchevnoi deyatelnosti , Tomsk: Peleng.
  17. Zinchenko V.P. & Mecheryakov B.G. (1996). Psihologicheskii Slovari, Moscow: Pedagogika-press.