DOI QR코드

DOI QR Code

The Effects of Mn-doping and Electrode Material on the Resistive Switching Characteristics of ZnOxS1-x Thin Films on Plastic

  • Han, Yong (Department of Nano Semiconductor Engineering, Korea University, Hynix Semiconductor Inc.) ;
  • Cho, Kyoungah (Department of Electrical Engineering, Korea University) ;
  • Park, Sukhyung (Department of Electrical Engineering, Korea University) ;
  • Kim, Sangsig (Department of Nano Semiconductor Engineering and Department of Electrical Engineering, Korea University)
  • 투고 : 2013.02.04
  • 심사 : 2013.12.04
  • 발행 : 2014.02.25

초록

In this study, the effects of Mn-doping and the electrode materials on the memory characteristics of $ZnO_xS_{1-x}$ resistive random access memory (ReRAM) devices on plastic are investigated. Compared with the undoped Al/$ZnO_xS_{1-x}$/Au and Al/$ZnO_xS_{1-x}$/Cu devices, the Mn-doped ones show a relatively higher ratio of the high resistance state (HRS) to low resistance state (LRS), and narrower resistance distributions in both states. For the $ZnO_xS_{1-x}$ devices with bottom electrodes of Cu, more stable conducting filament paths are formed near these electrodes, due to the relatively higher affinity of copper to sulfur, compared with the devices with bottom electrodes of Au, so that the distributions of the set and reset voltages get narrower. For the Al/$ZnO_xS_{1-x}$/Cu device, the ratio of the HRS to LRS is above $10^6$, and the memory characteristics are maintained for $10^4$ sec, which values are comparable to those of ReRAM devices on Si or glass substrates.

키워드

참고문헌

  1. C. H. Cheng, F. S. Yeh and A. Chin, Adv. Mater. 23, 902 (2011) [DOI: http://dx.doi.org/10.1002/adma.201002946].
  2. K. Kinoshita, T. Okutani, H. Tanaka, T. Hinoki, H. Agura, K. Yazawa, K. Ohmi and S. Kishida, Solid-State Electron 58, 48 (2011) [DOI: http://dx.doi.org/10.1016/j.sse.2010.11.026].
  3. S. K. Hong, J. E. Kim, S. O. Kim, S. Y. Choi and B. J. Cho, IEEE Elec. Dev. Lett. 31, 1005 (2010) [DOI: http://dx.doi.org/10.1109/LED.2010.2053695].
  4. J. Yun, K. Cho, B. Park, B. H. Park and S. Kim, J. Mater. Chem. 19, 2082 (2009) [DOI: http://dx.doi.org/10.1039/B817062B].
  5. S. Y. Wang, C. W. Huang, D. Y. Lee, T. Y. Tseng and T. Chang, J. Appl. Phys. 108, 114110 (2010) [DOI: http://dx.doi.org/10.1063/1.3518514] .
  6. S. H. Lee, W. G. Kim, S. W. Rhee and K. J. Yong, J. Electrochem. Soc. 155, H92 (2008) [DOI: http://dx.doi.org/10.1149/1.2814153].
  7. P. Gonon, M. Mougenot, C. Vallee, C. Jorel, V. Jousseaume, H. Grampeix and F. E. Kamel, J. Appl. Phys. 107, 074507 (2010) [DOI: http://dx.doi.org/10.1063/1.3357283].
  8. M. Y. Chan, T. Zhang, V. Ho and P. S. Lee, Microelectron Eng. 85, 2420 (2008) [DOI: http://dx.doi.org/10.1016/j.mee.2008.09.021].
  9. S. Kim, H. Moon, D. Gupta, S. Yoo and Y. K. Choi, IEEE Trans. Elec. Dev. 56, 696 (2009) [DOI: http://dx.doi.org/10.1109/TED.2009.2012522].
  10. Z. Q. Wang, H. Y. Xu, X. H. Li, X. T. Zhang, Y. X. Liu and Y. Liu, IEEE Elec. Dev. Lett. 32, 1442 (2011) [DOI: http://dx.doi.org/10.1109/LED.2011.2162311] .
  11. Y. Han, K. Cho and S. Kim, J. Nanosci. Nanotechnol. 12, 5732 (2012) [DOI: http://dx.doi.org/10.1166/jnn.2012.6230].
  12. B. K. Meyer, A. Polity, B. Farangis, Y. He, D. Hasselkamp, T. H. Kramer and C. Wang, Appl. Phys. Lett. 85, 4929 (2010) [DOI: http://dx.doi.org/10.1063/1.1825053].
  13. H. Y. Peng, G. P. Li, J. Y. Ye, Z. P. Wei, Z. Zhang, D. D. Wang, G. Z. Xing and T. Wu, Appl. Phys. Lett. 96, 192113 (2010) [DOI: http://dx.doi.org/10.1063/1.3428365].
  14. H. Peng and T. Wu, Appl. Phys. Lett. 95, 152106 (2009) [DOI: http://dx.doi.org/10.1063/1.3249630].
  15. J. G. Kim, H. D. Na, J. H. Oh, D. H. Ko and H. C. Sohn, J. Vac. Sci. Technol. B. 28, 1143 (2010) [DOI: http://dx.doi.org/10.1116/1.3501109].
  16. L. F. Liu, J. F. Kang, N. Xu, X. Sun, C. Chen, B. Sun, Y. Wang, X. Y. Liu, X. Zhang and R. Q. Han, Jpn. J. Appl. Phys. 47, 2701 (2008) [DOI: http://dx.doi.org/10.1143/JJAP.47.2701].
  17. K. A. Bogle, M. N. Bachhav, M. S. Deo, N. Valanoor and S. B. Ogale, Appl. Phys. Lett. 95, 203502 (2009) [DOI: http://dx.doi.org/10.1063/1.3263713].
  18. Y. C. Yang, F. Pan, Q. Liu, M. Liu and F. Zeng, Nano Lett. 9, 1636 (2009) [DOI: http://dx.doi.org/10.1021/nl900006g].
  19. X. Chen, G. Wu and D. Bao, Appl. Phys. Lett. 93, 093501 (2008) [DOI: http://dx.doi.org/10.1063/1.2978158].
  20. W. C. Chien, Y. C. Chen, E. K. Lai, Y. D. Yao, P. Lin, S. F. Hong, J. Gong, T. H. Chou, H. M. Lin, M. N. Chang, Y. H. Shih, K. Y. Hsieh and R. Liu IEEE Elec. Dev. Lett. 36, 126 (2010) [DOI: http://dx.doi.org/10.1109/LED.2009.2037593].
  21. K. M. Kim, B. J. Choi, Y. C. Shin, S. Choi and C. S. Huang, Appl. Phys. Lett. 91, 012907 (2007) [DOI: http://dx.doi.org/10.1063/1.2749846].
  22. J. Y. Son and Y. H. Shin, Appl. Phys. Lett. 92, 222106 (2008) [DOI: http://dx.doi.org/10.1063/1.2931087].
  23. J. Han, A. M. R. Senos and P. Q. Mantas, J. Eur. Ceram. Soc. 22, 1653 (2002) [DOI: http://dx.doi.org/10.1016/S0955-2219(01)00484-8].
  24. C. Vallee, P. Gonon, C. Jorel and F. E. Kamel, Appl. Phys. Lett. 96, 233504 (2010) [DOI: http://dx.doi.org/10.1063/1.3447795].
  25. C. Y. Lin, M. H. Lin, M. C. Wu, C. H. Lin and T. Y. Tseng, IEEE Elec. Dev. Lett. 29, 1108 (2008) [DOI: http://dx.doi.org/10.1109/LED.2008.2002879].

피인용 문헌

  1. Multilevel Resistive-Change Memory Operation of Al-Doped ZnO Thin-Film Transistor vol.37, pp.8, 2016, https://doi.org/10.1109/LED.2016.2584704
  2. Status and Prospects of ZnO-Based Resistive Switching Memory Devices vol.11, pp.1, 2016, https://doi.org/10.1186/s11671-016-1570-y
  3. Surface effects of electrode-dependent switching behavior of resistive random-access memory vol.109, pp.13, 2016, https://doi.org/10.1063/1.4963671
  4. Resistive switching properties of manganese oxide nanoparticles with hexagonal shape vol.30, pp.1, 2015, https://doi.org/10.1088/0268-1242/30/1/015017